Альфа распад приводит к высвобождению. Элементы физики атомного ядра и элементарных частиц

Альфа-распад - распад атомных ядер, сопровождающийся испусканием альфа-частиц (ядер 4 He).
Часть изотопов могут самопроизвольно испускать альфа-частицы (испытывать альфа-распад), т.е. являются альфа-радиоактивными . Альфа-радиоактивность за редким исключением (например 8 Be) не встречается среди легких и средних ядер. Подавляющее большинство альфа-радиоактивных изотопов (более 200) расположены в периодической системе в в области тяжелых ядер (Z > 83). Известно также около 20 альфа-радиоактивных изотопов среди редкоземельных элементов, кроме того, альфа-радиоактивность характерна для ядер, находящихся вблизи границы протонной стабильности. Это обусловлено тем, что альфа-распад связан с кулоновским отталкиванием, которое возрастает по мере увеличения размеров ядер быстрее (как Z 2), чем ядерные силы притяжения, которые растут линейно с ростом массового числа A.
Ядро альфа-радиоактивно, если выполнено условие, являющееся следствием закона сохранения энергии

которая называется энергией альфа-распада . Ядра могут испытывать альфа-распад также на возбужденные состояния конечных ядер и из возбужденных состояний начальных ядер. Поэтому соотношение для энергии альфа-распада (2) можно обобщить следующим образом

Q α = (M(A,Z) - M(A-4,Z-2) - M α) с 2 + - ,

где и - энергии возбуждения начального и конечного ядер соответственно. Альфа-частицы, возникающие в результате распада возбужденных состояний, получили название длиннопробежных . Для большинства ядер с A > 190 и для многих ядер с 150 < A < 190 условие (12) выполняется, однако далеко не все они считаются альфа-радиоактивными. Дело в том, что современные экспериментальные возможности не позволяют обнаружить альфа-радиоактивность для нуклидов с периодом полураспада большим, чем 10 16 лет. Кроме того, часть “потенциально” альфа-радиоактивных ядер испытывают также бета-распад, который сильно конкурирует с альфа-распадом.
Основную часть энергии альфа-распада (около 98%) уносят альфа-частицы. Используя законы сохранения энергии и импульса для кинетической энергии альфа-частицы T α можно получить соотношение

Периоды полураспада известных альфа-радиоактивных нуклидов варьируются от 0.298 мкс для 212 Po до >10 15 лет для 144 Nd, 174 Hf... Энергия альфа-частиц, испускаемых тяжелыми ядрами из основных состояний, составляет 4 - 9 МэВ, ядрами редкоземельных элементов 2 - 4.5 МэВ.
Важным свойством альфа-распада является то, что при небольшом изменении энергии альфа-частиц периоды полураспада меняются на многие порядки. Так у 232 Th Q α = 4.08 МэВ, T 1/2 = 1.41·10 10 лет, а у 218 Th Q α = 9.85 МэВ, T 1/2 = 10 мкс. Изменению энергии в 2 раза соответствует изменение в периоде полураспада на 24 порядка.
Для четно-четных изотопов одного элемента зависимость периода полураспада от энергии альфа-распада хорошо описывается эмпирическим законом Гейгера - Неттола

где T 1/2 в сек, Q α в МэВ. На рис. 1 показаны экспериментальные значения периодов полураспада для 119 альфа-радиоактивных четно-четных ядер (Z от 74 до 106) и их описание с помощью соотношения (6).


Для нечетно-четных, четно-нечетных и нечетно-нечетных ядер общая тенденция сохраняется, но их периоды полураспада в 2 - 1000 раз больше, чем для четно-четных ядер с данными Z и Q α .
Основные особенности альфа-распада, в частности сильную зависимость вероятности альфа-распада от энергии удалось в 1928 г. объяснить Г. Гамову и независимо от него Р. Герни и Э. Кондону . Ими было показано, что вероятность альфа-распада в основном определяется вероятностью прохождения альфа-частицы сквозь потенциальный барьер.
Рассмотрим простую модель альфа-распада. Предполагается, что альфа-частица движется в сферической области радиуса R, где R - радиус ядра. Т.е. в этой модели предполагается, что альфа-частица постоянно существует в ядре.
Вероятность альфа-распада равна произведению вероятности найти альфа-частицу на границе ядра f на вероятность ee прохождения через потенциальный барьер D (прозрачность барьера)

Можно отожествить f с числом соударений в единицу времени, которые испытывает альфа-частица о внутренние границы барьера, тогда

где v, T a , a - скорость внутри ядра, кинетическая энергия и приведенная масса альфа-частицы, V 0 - ядерный потенциал. Подставив в выражение (8) V 0 = 35 МэВ, T a = 5 МэВ, получим для ядер с A 200, f 10 21 с -1 .
Hа рис.2 показана зависимость потенциальной энергии между альфа-частицей и остаточным ядром от расстояния между их центрами. Кулоновский потенциал обрезается на расстоянии R, которое приблизительно равно радиусу остаточного ядра. Высота кулоновского барьера B k определяется соотношением

МэВ

Здесь Z и z - заряды (в единицах заряда электрона e) остаточного ядра и альфа-частицы соответственно. Например для 238 U B k 30 МэВ.

Можно выделить три области.

  1. r < R - сферическая потенциальная яма глубиной V. В классической механике альфа-частица с кинетической энергией T a + V 0 может двигаться в этой области, но не способна ее покинуть. В этой области существенно сильное взаимодействие между альфа-частицей и остаточным ядром.
  2. R < r < r e - область потенциального барьера, в которой потенциальная энергия больше энергии альфа-частицы, т.е. это область запрещенная для классической частицы.
  3. r > r e - область вне потенциального барьера. В квантовой механике возможно прохождение альфа-частицы сквозь барьер (туннелирование), однако вероятность этого весьма мала.


Рис. 5

(Аналогично влияние кулоновского барьера и в случае ядерной реакции, когда альфа-частица подлетает к ядру. Если ее энергия меньше высоты кулоновского барьера, она скорее всего рассеется кулоновским полем ядра, не проникнув в него и не вызвав ядерной реакции. Вероятность таких подбарьерных реакций очень мала.)

Альфа и бета-излучения в общем случае называются радиоактивными распадами. Это процесс, представляющий собой испускание из ядра, происходящий с огромной скоростью. В результате атом или его изотоп может превратиться из одного химического элемента в другой. Альфа и бета-распады ядер характерны для нестабильных элементов. К ним относятся все атомы с зарядовым числом больше 83 и массовым числом, превышающим 209.

Условия возникновения реакции

Распад, подобно другим радиоактивным превращениям, бывает естественным и искусственным. Последний происходит из-за попадания в ядро какой-либо посторонней частицы. Сколько альфа и бета-распада способен претерпеть атом - зависит лишь от того, как скоро будет достигнуто стабильное состояние.

При естественных обстоятельствах встречается альфа и бета-минус распады.

При искусственных условиях присутствует нейтронный, позитронный, протонный и другие, более редкие разновидности распадов и превращений ядер.

Данные названия дал занимавшийся изучением радиоактивного излучения.

Различие между стабильным и нестабильным ядром

Способность к распаду напрямую зависит от состояния атома. Так называемое "стабильное" или нерадиоактивное ядро свойственно нераспадающимся атомам. В теории наблюдение за такими элементами можно вести до бесконечности, чтобы окончательно убедиться в их стабильности. Требуется это для того, чтобы отделить такие ядра от нестабильных, которые имеют крайне долгий период полураспада.

По ошибке такой "замедленный" атом можно принять за стабильный. Однако ярким примером может стать теллур, а конкретнее, его изотоп с номером 128, имеющий в 2,2·10 24 лет. Этот случай не единичный. Лантан-138 подвержен полураспаду, срок которого составляет 10 11 лет. Этот срок в тридцать раз превышает возраст существующей вселенной.

Суть радиоактивного распада

Данный процесс происходит произвольно. Каждый распадающийся радионуклид приобретает скорость, являющуюся константой для каждого случая. Скорость распада не может измениться под влиянием внешних факторов. Неважно, будет происходить реакция под воздействием огромной гравитационной силы, при абсолютном нуле, в электрическом и магнитном поле, во время какой-либо химической реакции и прочее. Повлиять на процесс можно только прямым воздействием на внутренность атомного ядра, что практически невозможно. Реакция спонтанная и зависит лишь от атома, в котором протекает, и его внутреннего состояния.

При упоминании радиоактивных распадов часто встречается термин "радионуклид". Тем, кто не знаком с ним, следует знать, что данное слово обозначает группу атомов, которые имеют радиоактивные свойства, собственное массовое число, атомный номер и энергетический статус.

Различные радионуклиды применяются в технических, научных и прочих сферах жизнедеятельности человека. К примеру, в медицине данные элементы используются при диагностировании заболеваний, обработке лекарств, инструментов и прочих предметов. Имеется даже ряд лечебных и прогностических радиопрепаратов.

Не менее важным является и определение изотопа. Этим словом называют особую разновидность атомов. Они имеют одинаковый атомный номер, как у обычного элемента, однако отличное массовое число. Вызвано это различие количеством нейтронов, которые не влияют на заряд, как протоны и электроны, но меняют массу. К примеру, у простого водорода их имеется целых 3. Это единственный элемент, изотопам которого были присвоены названия: дейтерий, тритий (единственный радиоактивный) и протий. В остальных случаях имена даются в соответствии с атомными массами и основным элементом.

Альфа-распад

Это вид радиоактивной реакции. Характерен для естественных элементов из шестого и седьмого периода таблицы химических элементов Менделеева. В особенности для искусственных или трансурановых элементов.

Элементы, подверженные альфа-распаду

В число металлов, для которых характерен данный распад, относят торий, уран и прочие элементы шестого и седьмого периода из периодической таблицы химических элементов, считая от висмута. Также процессу подвергаются изотопы из числа тяжелых элементов.

Что происходит во время реакции?

При альфа-распаде начинается испускание из ядра частиц, состоящих из 2 протонов и пары нейтронов. Сама выделяемая частица является ядром атома гелия, с массой 4 единицы и зарядом +2.

В итоге появляется новый элемент, который расположен на две клетки левее исходного в периодической таблице. Такое расположение определяется тем, что исходный атом потерял 2 протона и вместе с этим - начальный заряд. В итоге масса возникшего изотопа на 4 массовые единицы уменьшается по сравнению с первоначальным состоянием.

Примеры

Во время такого распада из урана образуется торий. Из тория появляется радий, из него - радон, который в итоге дает полоний, и в конце - свинец. При этом в процессе возникают изотопы этих элементов, а не они сами. Так, получается уран-238, торий-234, радий-230, радон-236 и далее, вплоть до возникновения стабильного элемента. Формула такой реакции выглядит следующим образом:

Th-234 -> Ra-230 -> Rn-226 -> Po-222 -> Pb-218

Скорость выделенной альфа-частицы в момент испускания составляет от 12 до 20 тыс. км/сек. Находясь в вакууме, такая частица обогнула бы земной шар за 2 секунды, двигаясь по экватору.

Бета-распад

Отличие этой частицы от электрона - в месте появления. Распад бета возникает в ядре атома, а не электронной оболочке, окружающей его. Чаще всего встречается из всех существующих радиоактивных превращений. Его можно наблюдать практически у всех существующих в настоящее время химических элементов. Из этого следует, что у каждого элемента имеется хотя бы один подверженный распаду изотоп. В большинстве случаев в результате бета-распадапроисходит бета-минус разложение.

Протекание реакции

При данном процессе происходит выбрасывание из ядра электрона, возникшего из-за самопроизвольного превращения нейтрона в электрон и протон. При этом протоны за счет большей массы остаются в ядре, а электрон, называемый бета-минус частицей, покидает атом. И поскольку протонов стало больше на единицу, ядро самого элемента меняется в большую сторону и располагается справа от исходного в периодической таблице.

Примеры

Распад бета с калием-40 превращает его в изотоп кальция, который расположен справа. Радиоактивный кальций-47 становится скандием-47, который может превратиться в стабильный титан-47. Как выглядит такой бета-распад? Формула:

Ca-47 -> Sc-47 -> Ti-47

Скорость вылета бета-частицы составляет 0,9 от скорости света, равной 270 тыс. км/сек.

В природе бета-активных нуклидов не слишком много. Значимых из них довольно мало. Примером может послужить калий-40, которого в естественной смеси содержится лишь 119/10000. Также естественными бета-минус-активными радионуклидами из числа значимых являются продукты альфа и бета-распад урана и тория.

Распад бета имеет типичный пример: торий-234, который при альфа-распаде превращается в протактиний-234, а затем таким же образом становится ураном, но другим его изотопом под номером 234. Этот уран-234 вновь из-за альфа-распада становится торием, но уже иной его разновидностью. Затем этот торий-230 становится радием-226, который превращается в радон. И в той же последовательности, вплоть до таллия, лишь с различными бета-переходами назад. Заканчивается этот радиоактивный бета-распад возникновением стабильного свинца-206. Это превращение имеет следующую формулу:

Th-234 -> Pa-234 -> U-234 -> Th-230 -> Ra-226 -> Rn-222 -> At-218 -> Po-214 -> Bi-210 -> Pb-206

Естественными и значимыми бета-активными радионуклидами являются К-40 и элементы от таллия до урана.

Распад бета-плюс

Также существует бета-плюс превращение. Оно также называется позитронный бета-распад. В нем происходит испускание из ядра частицы под названием позитрон. Результатом становится превращение исходного элемента в стоящий слева, который имеет меньший номер.

Пример

Когда происходит электронный бета-распад, магний-23 становится стабильным изотопом натрия. Радиоактивный европий-150 становится самарием-150.

Возникшая реакция бета-распада может создать бета+ и бета- испускания. Скорость вылета частиц в обоих случаях равна 0,9 от скорости света.

Другие радиоактивные распады

Не считая таких реакций, как альфа-распад и бета-распад, формула которых широко известна, существуют и другие, более редкие и характерные для искусственных радионуклидов процессы.

Нейтронный распад . Происходит испускание нейтральной частицы 1 единицы массы. Во время него один изотоп превращается в другой с меньшим массовым числом. Примером может стать превращение лития-9 в литий-8, гелия-5 в гелий-4.

При облучении гамма-квантами стабильного изотопа йода-127 он становится изотопом с номером 126 и приобретает радиоактивность.

Протонный распад . Встречается крайне редко. Во время него происходит испускание протона, имеющего заряд +1 и 1 единицу массы. Атомный вес становится меньше на одно значение.

Любое радиоактивное превращение, в частности, радиоактивные распады, сопровождаются выделением энергии в форме гамма-излучения. Его называют гамма-квантами. В некоторых случаях наблюдается рентгеновское излучение, имеющее меньшую энергию.

Представляет собой поток гамма-квантов. Является электромагнитным излучением, более жестким, чем рентгеновское, которое применяется в медицине. В результате появляются гамма-кванты, или потоки энергии из атомного ядра. Рентгеновское излучение также является электромагнитным, но возникает из электронных оболочек атома.

Пробег альфа-частиц

Альфа-частицы с массой от 4 атомных единиц и зарядом +2 движутся прямолинейно. Из-за этого можно говорить о пробеге альфа-частиц.

Значение пробега зависит от изначальной энергии и колеблется от 3 до 7 (иногда 13) см в воздухе. В плотной среде составляет сотую долю от миллиметра. Подобное излучение не может пробить лист бумаги и человеческую кожу.

Из-за собственной массы и зарядового числа альфа-частица имеет наибольшую ионизирующую способность и разрушает все на пути. В связи с этим альфа-радионуклиды наиболее опасны для людей и животных при воздействии на организм.

Проникающая способность бета-частиц

В связи с малым массовым числом, которое в 1836 раз меньше протона, отрицательным зарядом и размером, бета-излучение оказывает слабое действие на вещество, через которое пролетает, но притом полет дольше. Также путь частицы не прямолинейный. В связи с этим говорят о проникающейся способности, которая зависит от полученной энергии.

Проникающие способности у бета-частиц, возникших во время радиоактивного распада, в воздухе достигают 2,3 м, в жидкостях подсчет ведется в сантиметрах, а в твердых телах - в долях от сантиметра. Ткани организма человека пропускают излучение на 1,2 см в глубину. Для защиты от бета-излучения может послужить простой слой воды до 10 см. Поток частиц с достаточно большой энергией распада в 10 Мэв почти весь поглощается такими слоями: воздух - 4 м; алюминий - 2,2 см; железо - 7,55 мм; свинец - 5,2 мм.

Учитывая малые размеры, частицы бета-излучения имеют малую ионизирующую способность по сравнении с альфа-частицами. Однако при попадании внутрь они намного опаснее, чем во время внешнего облучения.

Наибольшие проникающие показатели среди всех видов излучений в настоящее время имеет нейтронное и гамма. Пробег этих излучений в воздухе иногда достигает десятков и сотен метров, но с меньшими ионизирующими показателями.

Большинство изотопов гамма-квантов по энергии не превышают показателей в 1,3 МэВ. Изредка достигаются значения в 6,7 МэВ. В связи с этим для защиты от такого излучения используются слои из стали, бетона и свинца для кратности ослабления.

К примеру, чтобы десятикратно ослабить гамма-излучения кобальта, необходима свинцовая защита толщиной около 5 см, для 100-кратного ослабления потребуется 9,5 см. Бетонная защита составит 33 и 55 см, а водная - 70 и 115 см.

Ионизирующие показатели нейтронов зависят от их энергетических показателей.

При любой ситуации лучшим защитным методом от излучения станет максимальное отдаление от источника и как можно меньшее времяпрепровождение в зоне высокой радиации.

Деление ядер атомов

Под атомов подразумевается самопроизвольное, или под влиянием нейтронов, на две части, примерно равные по размерам.

Эти две части становятся радиоактивными изотопами элементов из основной части таблицы химических элементов. Начинаются от меди до лантаноидов.

Во время выделения вырывается пара лишних нейтронов и возникает избыток энергии в форме гамма-квантов, который гораздо больше, чем при радиоактивном распаде. Так, при одном акте радиоактивного распада возникает один гамма-квант, а во время акта деления появляется 8,10 гамма-квантов. Также разлетевшиеся осколки имеют большую кинетическую энергию, переходящую в тепловые показатели.

Высвободившиеся нейтроны способны спровоцировать разделение пары аналогичных ядер, если они расположены вблизи и нейтроны в них попали.

В связи с этим возникает вероятность возникновения разветвляющей, ускоряющейся цепной реакции разделения атомных ядер и создания большого количества энергии.

Когда такая цепная реакция находится под контролем, то её можно использовать в определённых целях. К примеру, для отопления или электроэнергии. Такие процессы проводятся на атомных электростанциях и реакторах.

Если потерять контроль над реакцией, то случится атомный взрыв. Подобное применяется в ядерном оружии.

В естественных условиях имеется только один элемент - уран, имеющий лишь один делящийся изотоп с номером 235. Он является оружейным.

В обыкновенном урановом атомном реакторе из урана-238 под влиянием нейтронов образуют новый изотоп под номером 239, а из него - плутоний, который является искусственным и не встречается в естественных условиях. При этом возникший плутоний-239 применяется в оружейных целях. Этот процесс деления атомных ядер является сутью всего атомного оружия и энергетики.

Такие явления, как альфа-распад и бета-распад, формула которых изучается в школе, широко распространенны в наше время. Благодаря данным реакциям, существуют атомные электростанции и многие другие производства, основанные на ядерной физике. Однако не стоит забывать про радиоактивность многих таких элементов. При работе с ними требуется специальная защита и соблюдение всех мер предосторожности. В противном случае это может привести к непоправимой катастрофе.

Начнем знакомство с разными вариантами распада нестабильных ядер - и с разными способами удерживать ядро от мгновенного развала - с альфа-распада. Альфа-частица - это просто ядро атома гелия, два протона и два нейтрона. Такая комбинация скреплена ядерными силами особенно крепко. Поэтому если уж тяжелое ядро и готово потерять лишние протоны и нейтроны, то они, как правило, вылетают именно в форме альфа-частицы. Этот процесс и называется альфа-распадом.

Вообще-то, ядро просто так альфа-частицу не отпустит: всё-таки между ними действуют ядерные силы притяжения. Вот если бы частица уже оторвалась от ядра и отошла бы на заметное расстояние, то тогда бы силы электрического отталкивания между ними развели бы их прочь. Но проникнуть в эту область просто так не получится - на пути к свободе альфа-частице надо как-то преодолеть высокий и широкий барьер потенциальной энергии. Он не пускает частицу и тем самым предотвращает моментальный альфа-распад ядра. Альфа-частица словно мечется в ядре, постоянно натыкаясь на потенциальный барьер.

По счастью, в квантовой механике частицы не локализованы, а немножко размазаны в пространстве. Поэтому с какой-то пусть очень маленькой, но всё же ненулевой вероятностью альфа-частица рано или поздно сможет оказаться по ту сторону барьера. Частица туннелирует, проходит потенциальный барьер насквозь, несмотря на то, что ей не хватает энергии переползти этот барьер поверху. И вот теперь, наконец-то оказавшись по ту сторону барьера, частица чувствует только электрическое отталкивание и с удовольствием улетает прочь.

Время жизни ядра, готового к альфа-распаду, определяется свойствами этого барьера. Чем выше и шире барьер, тем меньше вероятность просочиться наружу, а значит, тем дольше придется ждать для того, чтобы альфа-распад произошел. В одних случаях барьер очень труднопреодолимый, и время жизни ядра получается безумно большим, вплоть до миллиардов лет. В других случаях барьер оказывается хиленьким, и распад происходит очень быстро. Например, самое простое ядро, способное испытывать альфа-распад - бериллий-8, 8 Be - содержит четыре протона и четыре нейтрона, и потому оно с огромным удовольствием распадается на две альфа-частицы. Его время жизни было измерено полвека назад и составляет 10 −16 с = 100 ас . Заметьте, что это хоть и быстрый распад, но по ядерным масштабам он всё-таки занимает порядка миллиона типичных ядерных циклов.

Между прочим, тот факт, что ядро 8 Be настолько нестабильно, имеет огромное значение для синтеза химических элементов во Вселенной и в конечном итоге - для жизни! В недрах звезд водород постепенно сгорает и превращается в гелий. Ядра гелия, альфа-частицы, постоянно летают, сталкиваются друг с другом и время от времени образуют бериллий-8. Если бы это ядро было стабильным или хотя бы долгоживущим, то на него быстро налипли бы новые альфа-частицы, получился бы углерод, азот и так далее. Иными словами, весь гелий бы очень быстро выгорел. В реальности же 8 Be распадается столь быстро, что редко когда в него успевает воткнуться еще одна альфа-частица. Именно поэтому гелий в звездах так просто не горит. Лишь на очень поздних этапах, когда давление в звезде повышается, процесс тройного превращения альфа-частиц в углерод через промежуточный бериллий-8 запускается на полную катушку.

Ядра большинства атомов – это довольно устойчивые образования.

Однако ядра атомов радиоактивных веществ в процессе радиоактивного распада самопроизвольно превращаются в ядра атомов других веществ. Так в 1903 году Резерфорд обнаружил, что помещенный в сосуд радий через некоторое время превратился в радон. А в сосуде дополнительно появился гелий.

Альфа-распад

При альфа-распаде излучается α-частица (ядро

атома гелия). Из вещества с количеством протонов Z и нейтронов N в атомном ядре оно превращается в вещество с количеством протонов Z-2 и количеством нейтронов N-2, атомной массой А-4. То есть происходит смещение образовавшегося элемента на две клетки назад в периодической системе.

Альфа-распад – это внутриядерный процесс . В составе тяжелого ядра за счет сложной картины сочетания ядерных и электростатических сил образуется самостоятельная α-частица, которая выталкивается кулоновскими силами гораздо активнее остальных нуклонов. При определенных условиях она может преодолеть силы ядерного взаимодействия и вылететь из ядра.

Бета-распад

При бета-распаде излучается электрон (β-частица). В результате распада одного нейтрона на протон, электрон и антинейтрино, состав ядра увеличивается на один протон, а электрон и антинейтрино излучаются вовне. Соответственно,
образовавшийся элемент смещается в периодической системе на одну клетку вперед.

Пример β-распада:


Бета-распад – это внутринуклонный процесс . Превращение претерпевает нейтрон. Существует также бета-плюс-распад или позитронный бета-распад. При позитронном распаде ядро испускает позитрон и нейтрино, а элемент смещается при этом на одну клетку назад по периодической таблице. Позитронный бета-распад обычно сопровождается электронным захватом.

Гамма-распад


Гамма-распад – это излучение гамма-квантов ядрами в возбужденном состоянии, при котором они обладают большой по сравнению с невозбужденным состоянием энергией. В возбужденное состояние ядра могут приходить при ядерных реакциях либо при радиоактивных


распадах других ядер. Большинство возбужденных состояний ядер имеют очень непродолжительное время жизни – менее наносекунды.

Существуют распады с эмиссией нейтрона, протона, кластерная радиоактивность и некоторые другие, очень редкие виды распадов. Но превалирующие виды радиоактивности это альфа, бета и гамма распад.

Таблица распадов

Тип радиоактивности

Изменение заряда ядра Z

Изменение массового числа А

Характер процесса

Вылет α-частицы – системы двух протонов и двух нейтронов, соединенных воедино

Взаимные превращения в ядре нейтрона () и протона ()

β – -распад

β + -распад

Электронный захват (е – -или К-захват)

И – электронное нейтрино и антинейтрино

Спонтанное деление

Z – (1/2)A

A – (1/2)A

Деление ядра обычно на два осколка, имеющих приблизительно равные массы и заряды

История изучения радиоактивного излучения.
Э. Резерфорд обнаружил две составляющие этого излучения: менее проникающую, названную α- излучением, и более проникающую, названную - излучением. Третья составляющая урановой радиации, самая проникающая из всех, была открыта позже, в 1900 году, Полем Виллардом и названа по аналогии с резерфордовским рядом γ-излучением. Резерфорд и его сотрудники показали, что радиоактивность связана с распад

ом атомов (значительно позже стало ясно, что речь идет о распаде атомных ядер), сопровождающимся выбросом из них определенного типа излучений. Этот вывод нанес сокрушительный удар по господствовавшей в физике и химии концепции неделимости атомов.
В последующих исследованиях Резерфорда было показано, что α-излучение представляет собой поток α-частиц , которые являются не чем иным, как ядрами изотопа гелия 4 Не, а

β-излучение состоит из электронов и γ-излучение является потоком высокочастотных электромагнитных квантов , испускаемых атомными ядрами при переходе из возбужденных в более низколежащие состояния.
β-распада ядер . Теория этого явления была создана лишь в 1933 году Энрико Ферми, который использовал гипотезу Вольфганга Паули о рождении в β-распаде нейтральной частицы, имеющей близкую к нулю массу покоя и названной нейтрино . Ферми обнаружил, что β-распад обусловлен новым типом взаимодействия частиц в природе - "слабым" взаимодействием и связан с процессами превращения в родительском ядре нейтрона в протон с испусканием электрона е - и антинейтрино (β - -распад), протона в нейтрон с испусканием позитрона е + и нейтрино ν (β + -распад), а также с захватом протоном атомного электрона и испусканием нейтрино ν (электронный захват).
Четвертый вид радиоактивности, открытый в России в 1940 году
молодыми физиками Г.Н. Флеровым и К.А. Петржаком, связан со спонтанным делением ядер, в процессе которого некоторые достаточно тяжелые ядра распадаются на два осколка с примерно равными массами.
Но и деление не исчерпало всех видов радиоактивных превращений атомных ядер. Начиная с 50-х годов физики методично приближались к открытию протонной радиоактивности ядер. Для того чтобы ядро, находящееся в основном состоянии, могло самопроизвольно испускать протон, необходимо, чтобы энергия отделения протона от ядра была положительной. Но таких ядер в земных условиях не существует, и их необходимо было создать искусственно. К получению таких ядер были очень близки российские физики в Дубне, но протонную радиоактивность открыли в 1982 году немецкие физики в Дармштадте, использовавшие самый мощный в мире ускоритель многозарядных ионов.
Наконец, в 1984 году независимые группы ученых в Англии и России открыли кластерную радиоактивность некоторых тяжелых ядер, самопроизвольно испускающих кластеры - атомные ядра с атомным весом от 14 до 34.

Расстановка ударений: А`ЛЬФА-РАСПА`Д

АЛЬФА-РАСПАД - радиоактивное превращение ядра, сопровождающееся испусканием альфа-частиц. При любом А.-р. из исходного ядра X с массовым числом А (число частиц в ядре) и атомным номером Z (число протонов в ядре) образуется новое ядро У с массовым числом А - 4 и атомным номером Z - 2 (см. Радиоактивность, Ядро атомное ): , где - альфа-частица (ядроизотопа гелия). При А.-р. происходит образование ядер нового элемента, смещенного в таблице Д. И. Менделеева на две клеточки левее исходного ядра. Такие самопроизвольные превращения ядер атомов сопровождаются выделением относительно больших количеств энергии, не зависят от внешних условий и обусловлены только внутренней структурой распадающихся ядер атомов.

Впервые закономерности А.-р. были установлены путем наблюдения за распадом радия (см.) - к-рый испускает альфа-частицы и превращается в новый радиоактивный газообразный элемент радон (cм.) - Измерения атомного веса радона подтвердили такое превращение.

Все тяжелые ядра атомов с Z больше 82 являются радиоактивными ядрами; среди этих элементов есть альфа-активные изотопы. Эти неустойчивые изотопы претерпевают цепочки альфа- и бета-распадов до тех пор, пока не превращаются в стабильные изотопы свинца (см. Радиоактивность ). Тяжелые ядра являются наименее устойчивыми, т. к. с увеличением Z возрастают кулоновские силы отталкивания протонов. Существуют также более легкие альфа-активные ядра: изотопы самария - Sm 146, 147, 152 , вольфрама - , неодима - и - платины - . Чем менее устойчиво ядро, тем оно быстрее распадается и испускает альфа-частицы с большей энергией - Е . Для различных альфа-активных ядер Е = 2 - 10 Мэв , а период полураспада Т изменяется в очень широких пределах: от 3,04⋅10 -7 сек до 2,2⋅10 17 лет . При А.-р. из невозбужденного материнского ядра обычно образуется невозбужденное дочернее ядро. При этом испускаются альфа-частицы одинаковой энергии, а ядро испытывает отдачу. Энергии ядра отдачи и альфа-частицы обратно пропорциональны их массам. Встречаются также изотопы, ядра к-рых, испуская альфа-частицы, превращаются в ядра, находящиеся в различных энергетических состояниях (нормальном и возбужденных). В этом случае испускаются не только альфа-частицы, но и гамма-кванты нескольких энергий. У некоторых изотопов с малыми периодами полураспада (Ро 211, 212; 214) наблюдаются переходы из возбужденных состояний с испусканием альфа-частиц значительно большей энергии, чем при переходе из невозбужденного состояния. Таких длиннопробежных частиц относительно мало.

В медицине и радиобиологии альфа-активные изотопы находят широкое применение для лечения (см. Лучевая терапия, Радий, Радон ) и диагностики. В последние годы альфа-активные изотопы усиленно изучаются радиобиологами и токсикологами, т. к. они применяются в атомной промышленности и атомной технике. См. также Альфа-излучение, Альфа-терапия.

Библиогр .: Белоусова И. М . и Штуккенберг Ю. М . Естественная радиоактивность, М., 1961; Кюри М . Радиоактивность, пер. с франц., М., 1960; Шпольский Э. В . Атомная физика, т. 2, С; 516, М.-Л., 1951.

Ю. М. Штуккенберг.


Источники:

  1. Большая медицинская энциклопедия. Том 1/Главный редактор академик Б. В. Петровский; издательство «Советская энциклопедия»; Москва, 1974.- 576 с.