Месторождения, отличия и применения алмазов и графита. Свойства, которыми обладают и алмаз, и графит

Страница 1

Алмаз - самое твердое природное вещество. Кристаллы алмазов высоко ценятся и как технический материал, и как драгоценное украшение. Хорошо отшлифованный алмаз - бриллиант. Преломляя лучи света, он сверкает чистыми, яркими цветами радуги.

Размеры мировой добычи алмазов очень незначительны - гораздо меньше, чем благородных металлов - золота и платины. Из алмазов делают наконечники буров для сверления твердых горных пород. Также алмазы применяют для резки стекла и в виде “алмазного инструмента”(резцы, сверла, шлифовальные круги). Алмазным порошком шлифуют бриллианты и твердые сорта стали. Самый крупный из когда-либо найденных алмазов весит 602 г, имеет длину 11 см, ширину 5 см, высоту 6 см. Этот алмаз был найден в 1905 г и носит имя “Кэллиан”.

Один из самых крохотных в мире граненых алмазов, весом всего лишь 0,25 мг(в 4000 раз легче копеечной монетки), демонстрировался на всемирной выставке в Брюсселе. Несмотря на ничтожный вес и размер - зернышко объемом 0,07 мм3 ,- искусные руки гранильщика нанесли на нем на нем 57 граней, рассмотреть которые можно только под микроскопом.

В 1967 г. Б.В. Дерягин и Д.В. Федосеев вырастили на грани алмаза нитеобразный кристалл (“алмазные усы”). Рост проис­ходил при высокой температуре, причем источником углерода служил метан; за четыре часа кристаллическая нить вырастала на 1 мм, что, вообще говоря, очень много для процессов такого рода.

Большая часть образцов аморфного угля состоит из иска­женных кристаллов графита. Характерное расположение атомов углерода по углам шестиугольника при этом сохраняется.

В решетках графита часто встречаются разнообразные де­фекты структуры, как структурные, так и химические, связан­ные с захватом ионов и атомов. В решетку графита могут внед­ряться (А. Убеллоде, Ф. Льюис) атомы бора, кислорода, серы и т. п., образующие связи между слоями и влияющие на прово­димость графита. Графит образует своеобразные химические соединения, в которых присоединяющиеся частицы размещают­ся между плоскостями, занятыми атомами углерода.

При нагревании графита в парах щелочных металлов полу­чаются легко окисляющиеся соединения. Так, при 400 °С калий образует соединение C8K. Состав соединений сильно зависит от температуры и изменяется в широких пределах. Известны со­единения графита с рубидием, цезием; для натрия и лития чет­ких результатов пока нет; натрий, по-видимому, дает соедине­ние C64Na фиолетового цвета.

Графит дает также соединения с металлами, аммиаком и аминами типа MeC12(NH3)2. Решетка графита во всех случаях расширяется при образовании соединений, и межплоскостное расстояние достигает 0,66 нм, а для метиламинового комплекса лития даже до 0,69 нм. Получены соединения: C9Br, C5CI, C8CI, CF.

Тифлон (CF) серого цвета, изолятор, не похож на другие соединения типа соединений “внедрения”. Предполагается образование в нем ковалентных связей фтор - углерод.

Графит раньше применялся как пишущее средство. С XIX века и по сей день используют графитовые электроды в металлургии и химической промышленности, например в производстве алюминия: металл осаждается на графитовом катоде. Сейчас нашли применение графитизированные стали, то есть стали с добавлением монокристаллов графита. Эти стали используют при изготовлении коленчатых валов, поршней и других деталей, где особенно важна высокая прочность и твердость материала.

Графит играет важную роль в элект­ротехнической промышленности и атомной энергетике, где его используют в качестве замедлителя нейтронов. С помощью графитовых стержней регулируют скорость реакции в атомных котлах.

Способность графита расщепляться на чешуйки позволяет делать на его основе смазочные вещества. Графит - прекрасный проводник теплоты, при этом он может выдержать значительные температуры до 3000 °С и выше. К тому же он химически довольно стоек. Эти свойства нашли применение в производстве графитовых теплообменников и в ракетной технике(для изготовления рулей и сопловых аппаратов.


В практике атомно-эмиссионного спектрального анализа в качестве источников возбуждения спектров применяют пламя, электрические дуги постоянного и переменного тока, низко- и высоковольтную конденсир...

Энергетика ТЭК: Нефть, нефтяная промышленность
В данном реферате рассказывается о том, что представляет собой нефть. Выссказаны различные мнения учёных об образовании нефти. Отдельный раздел реферата посвящён рассмотрению вопросов получ...

Кванты излучения и переходы. Уровни энергии и спектральные переходы в атоме водорода
Квантовая механика изучает объекты с размерами от 10-7¸10-8 см до 10-16см. Её разделы, посвящённые строению вещества: Квантовая химия, изучает электронное строение атомно-мо...

Введение

Алмазная промышленность нашей страны находится в стадии развития, внедрения новых технологий обработки минералов.

Найденные месторождения алмазов вскрываются лишь процессами эрозии. Для разведчика это означает, что существует множество «слепых» месторождений, не выходящих на поверхность. Об их присутствии можно узнать по обнаруженным локальным магнитным аномалиям, верхняя кромка которых располагается на глубине в сотни, а если повезет - то в десятки метров. (А. Портнов).

Исходя из вышесказанного, я могу судить о перспективности развития алмазной промышленности. Именно поэтому я выбрала тему - «Алмаз и графит: свойства, происхождение и значение».

В своей работе я попыталась проанализировать связь между графитом и алмазом. Для этого сравнила эти вещества с нескольких точек зрения. Я рассмотрела общую характеристику данных минералов, промышленные типы их месторождений, природные и технические типы, разработку месторождений, области применения, значение данных минералов.

Несмотря на то, что графит и алмаз полярные по своим свойствам, они являются полиморфными модификациями одного и того же химического элемента -- углерода. Полиморфные модификации, или полиморфы -- это вещества, которые имеют одинаковый химический состав, но различную кристаллическую структуру. С началом синтеза искусственных алмазов резко возрос интерес к исследованию и поискам полиморфных модификаций углерода. В настоящее время, кроме алмаза и графита, достоверно установленными можно считать лонсдейлит и чаотит. Первый во всех случаях был найден только в тесном взаимопрорастании с алмазом и поэтому называется еще гексагональным алмазом, а второй встречается в виде пластинок, чередующихся с графитом, но расположенных перпендикулярно его плоскости.

Полиморфные модификации углерода: алмаз и графит

Единственный минералообразующий элемент алмаза и графита -- это углерод. Углерод (С) -- химический элемент IV группы периодической системы химических элементов Д.И.Менделеева, атомный номер - 6, относительная атомная масса -- 12,011(1). Углерод устойчив в кислотах и щелочах, окисляется только дихроматом калия или натрия, хлористым железом или алюминием. Углерод имеет два стабильных изотопа С(99,89%) и С(0,11%). Данные изотопного состава углерода показывают, что он бывает разного происхождения: биогенного, небиогенного и метеоритного. Многообразие соединений углерода, объясняющееся способностью его атомов соединяться друг с другом и атомами других элементов различными способами, обусловливает особое положение углерода среди других элементов.

Общая характеристика алмаза

При слове «алмаз» сразу же вспоминаются тайные истории, повествующие о поисках сокровищ. Когда-то люди, охотившиеся за алмазами, и не подозревали, что предметом их страсти является кристаллический углерод, который образует сажу, копоть и уголь. Впервые это доказал Лавуазье. Он поставил опыт по сжиганию алмаза, используя собранную специально для этой цели зажигательную машину. Оказалось, алмаз сгорает на воздухе при температуре около 850-1000*С, не оставляя твердого остатка, как и обычный уголь, а в струе чистого кислорода сгорает при температуре 720-800*С. При нагревании до 2000-3000*С без доступа кислорода он переходит в графит (это объясняется тем, что гомеополярные связи между атомами углерода в алмазе очень прочны, что обусловливает очень высокую температуру плавления.

Алмаз -- бесцветное, прозрачное кристаллическое вещество, чрезвычайно сильно преломляющее лучи света.

Атомы углерода в алмазе находятся в состоянии sp3-гибридизации. В возбужденном состоянии происходит распаривание валентных электронов в атомах углерода и образование четырёх неспаренных электронов.

Каждый атом углерода в алмазе окружен четырьмя другими, расположенными от него в направлении от центра в вершинах тетраэдра.

Расстояние между атомами в тетраэдрах равно 0,154 нм.

Прочность всех связей одинакова.

Весь кристалл представляет собой единый трехмерный каркас.

При 20*С плотность алмаза составляет 3,1515 гр/см. Этим объясняется его исключительная твердость, которая по граням различна и уменьшается в последовательности: октаэдр -- ромбододекаэдр -- куб. В то же время алмаз обладает совершенной спайностью (по октаэдру), а предел прочности на изгиб и сжатие у него ниже, чем у других материалов, поэтому алмаз хрупок, при резком ударе раскалывается и при дроблении сравнительно легко превращается в порошок. Алмаз обладает максимальной жесткостью. Сочетание этих двух свойств позволяет использовать его для абразивных и других инструментов, работающих при значительном удельном давлении.

Показатель преломления (2,42) и дисперсия (0,063) алмаза намного превышают аналогичные свойства других прозрачных минералов, что в сочетании с максимальной твердостью обусловливает его качество как драгоценного камня.

В алмазах обнаружены примеси азота, кислорода, натрия, магния, алюминия, кремния, железа, меди и других, обычно в тысячных долях процента.

Алмаз чрезвычайно стоек к кислотам и щелочам, не смачивается водой, но обладает способностью прилипать к некоторым жировым смесям.

Алмазы в природе встречаются как в виде хорошо выраженных отдельных кристаллов, так и поликристаллических агрегатов. Правильно образованные кристаллы имеют вид многогранников с плоскими гранями: октаэдр, ромбододекаэдр, куб и комбинации этих форм. Очень часто на гранях алмазов имеются многочисленные ступени роста и растворения; если они неразличимы глазом, грани кажутся искривленными, сферическими, в форме октаэдроида, гексаэдроида, кубоида и их комбинаций. Различная форма кристаллов обусловлена их внутренним строением, наличием и характером распределения дефектов, а также физико-химическим взаимодействием с окружающей кристалл средой.

Среди поликристаллических образований выделяются -- баллас, карбонадо и борт.

Баллас -- это сферолитовые образования с радиально-лучистым строением. Карбонадо -- скрытокристаллические агрегаты с размером отдельных кристаллов 0,5-50 мкм. Борт -- яснозернистые агрегаты. Балласы и особенно карбонадо имеют самую высокую твердость из всех видов алмазов.

Рис.1

Рис.2

Общая характеристика графита

Графит -- серо-черное кристаллическое вещество с металлическим блеском, жирное на ощупь, по твердости уступает даже бумаге.

Структура графита слоистая, внутри слоя атомы связаны смешанными ионно-ковалентными связями, а между слоями -- существенно металлическими связями.

Атомы углерода в кристаллах графита находятся в sp2-гибридизации. Углы между направлениями связей равны 120*. В результате образуется сетка, состоящая из правильных шестиугольников.

При нагревании без доступа воздуха графит не претерпевает никакого изменения до 3700 *С. При указанной температуре он выгоняется, не плавясь.

Кристаллы графита -- это, как правило, тонкие пластинки.

В связи с низкой твердостью и весьма совершенной спайностью графит легко оставляет след на бумаге, жирный на ощупь. Эти свойства графита обусловлены слабыми связями между атомными слоями. Прочностные характеристики этих связей характеризуют низкая удельная теплоемкость графита и его высокая температура плавления. Благодаря этому, графит обладает чрезвычайно высокой огнеупорностью. Кроме того, он хорошо проводит электричество и тепло, устойчив при воздействии многих кислот и других химических реагентов, легко смешивается с другими веществами, отличается малым коэффициентом трения, высокой смазывающей и кроющей способностью. Все это привело к уникальному сочетанию в одном минерале важных свойств. Поэтому графит широко используется в промышленности.

Содержание углерода в минеральном агрегате и структура графита являются главными признаками, определяющими качество. Графитом часто называют материал, который, как правило, не является не только монокристаллическим, но и мономинеральным. В основном имеют в виду агрегатные формы графитового вещества, графитовые и графитсодержащие породы и продукты обогащения. В них, кроме графита, всегда присутствуют примеси (силикаты, кварц, пирит и др.). Свойства таких графитовых материалов зависят не только от содержания графитового углерода, но и от величины, формы и взаимных отношений кристаллов графита т.е. от текстурно-структурных признаков используемого материала. Поэтому для оценки свойств графитовых материалов необходимо учитывать как особенности кристаллической структуры графита, так и текстурно-структурные особенности других их составляющих.

Рис.3.

В этой статье:

«Для каких целей применяют алмаз и графит?» - этим вопросом едва ли задается кто-либо из людей, проявляющих интерес лишь к оболочке минералов. Действительно, что может связывать два таких разных по своим свойствам вещества? Алмаз - твердый минерал, залежи которого в природе встречаются редко. Графит - один из самых мягких минералов, месторождения его имеются во многих частях света. Казалось бы, между этими веществами нет никакой связи, но на самом деле это не так - понимание того факта позволяет не только понять, где и с какой целью их используют, но и то, как это делается.

Физические и химические особенности

Алмаз - прозрачный минерал, форма - кристаллическая. Встречаются алмазы, окрашенные в красный, голубой и черный цвета. Ограненный алмаз становится бриллиантом, стоимость его повышается, но на свойствах вещества это не отражается.

Связь «искусственный алмаз - графит»

Минерал является аллотропной модификацией углерода. По шкале твердости Мооса он занимает 10 позицию и потому считается самым твердым из всех минералов. В этом отличие между алмазом и графитом, несмотря на то что они могут являться производными друг друга.

Алмаз лучше других минералов отражает и преломляет свет. Плотность минерала равняется 3,4-3,5 г/см3. Способность проводить тепло колеблется на уровне 2300 Вт. Коэффициент трения по металлу равняется 0,1, что объясняется наличием у алмаза пленки из адсорбированного газа. Температура плавления алмаза - 4000 градусов Цельсия, при этом он должен подвергаться давлению в 11 ГПа.

Процесс горения минерала начинается при достижении температуры воздуха в 800-1000 градусов. При участии в реакции горения чистого кислорода, алмаз воспламеняется подобно пропану. В процессе горения возникает голубое пламя.

Атомы и молекулы кристаллической решетки алмаза соединены между собой прочными объемными связями, образуя правильный тетраэдр. Каждый атом в таком тетраэдре находится в окружении других атомов, образующих верхушку тетраэдров, расположенных рядом. Таким образом, каждый из тетраэдров является частью всех тетраэдров, что обуславливает твердость и неразрушимость алмаза. Алмаз и графит имеют разное строение решетки.

В отличие от алмаза графит не является кристаллом. Минерал представляет собой набор пластинок черного с серым отливом цвета. Облик минерала напоминает сталь. Графитизация графита происходит в металлических сплавах, содержащих нестойкие карбиды углерода. При контакте с графитом ощущается наличие жира, но сам он мягкий, легко крошится, оставляя черные пятна.

Минерал является проводником тепла и электричества. Являясь полиморфной модификацией углерода, он во многом схож по своему химическому составу с алмазом. Отличительная особенность - строение молекулярной решетки. Решетка графита плоская. Все атомы графита располагаются в одной плоскости, представленной рядом шестиугольников, имеющих слабые связи между собой. Такое строение решетки делает минерал мягким и слоистым, что позволяет применять его в различных областях деятельности.

Кроме того, такое строение решетки делает возможным процесс превращения графита в алмаз. Естественно, что для такого превращения требуются условия, такие, как температура и давление воздуха. Процесс может быть обратным: переход алмаза в графит происходит в ходе термального воздействия и давления.

Области применения

Алмаз является самым твердым из всех минералов. Он режет стекло, дерево, металл, предметы, изготовленные из веществ, уступающих алмазу по твердости. Подобная способность расширяет области применения алмазов, ранее ограничивающиеся исключительно ювелирным делом.

Графит - мягкий минерал, но именно это делает его незаменимым в промышленности, архитектуре и даже искусстве.

Алмаз

Вплоть до середины прошлого столетия алмазы использовались исключительно в качестве украшения. Камни подвергались обработке, использовались в качестве замены деньгам. Необходимо отметить, что первые попытки придать алмазу форму не имели успеха. Твердость минерала не позволяла использовать для его обработки предметы, изготовленные из металла, камня, дерева. В процессе исследований удалось выяснить, что огранку алмаза нужно проводить таким же прочным веществом, то есть самим алмазом. Такого рода открытие навело на мысль о возможности применения алмазов в других областях.

На сегодняшний день алмазам находят применение в:

  1. Строительстве. Создание алмазных буров упростило работу с конструкциями из бетона и стали. Алмазы являются важной деталью сверл, инструментов для резки и демонтажа. Использование минералов исключает появление трещин, что особо важно при прокладке тоннелей, подведении труб, строительстве зданий. Алмазные сверла и пилы режут бетон, сталь, гранит, мрамор, перемалывает щебень. В этой области алмаз и графит не сравнимы, но опять же взаимосвязаны.
  2. Приборостроении. Многие приборы содержат в себе частичку алмазной пыли либо цельные алмазы.
  3. Машиностроительных областях. При обтачивании металлических инструментов чаще всего используются алмазы.
  4. Космической области. Создание точных телескопов невозможно без использования алмазных деталей.
  5. Хирургии. Основным инструментом хирурга является скальпель, толщина и острота которого во многом определяет успех операции. Алмазные скальпели как нельзя лучше справляются с этой задачей. Особого внимания заслуживают разрабатываемые лазеры на кристаллах, проводящим веществом которых выступает алмаз.
  6. Телекоммуникациях и электронике. Чтобы сигналы разных частот могли проходить по одному кабелю, также используются алмазы. Применение их в этой области связано со способностью выдерживать большие температуры и скачки напряжения.
  7. Науке. Минерал нейтрализует воздействие агрессивной среды, потому его используют как защитный элемент. Алмаз является составной частью опытов, проводимых в таких областях, как квантовая физика, оптика, создание лазеров.
  8. Добыче полезных ископаемых. Приборы, основной деталью которых является алмаз, используются при бурении шахт, добыче нефти, угля и газа.

В промышленных целях используют алмазы, выращенные исключительно синтетическим образом. Настоящие камни используются крайне редко, несмотря на то, что графит и алмаз встречаются в природе.

Структура алмаза и графита

Всем известны такие вещества, как графит и алмаз. Графит встречается повсюду. Например, из него делают стержни для простых карандашей. Графит - это вещество вполне доступное и дешевое. Но такое вещество, как алмаз, крайне отличается от графита. Алмаз - это самый дорогой камень, очень редкий и прозрачный, в отличие от графита. В это трудно поверить, но химическая формула графита совпадает с формулой алмаза. В данной статье мы разберем, как такое возможно.

Графит: история и свойства минерала

История графита насчитывает тысячи лет, поэтому точный год начала его применения установить крайне трудно. Графит знаменит тем, что хорошо проводит электрический ток. Кроме того, этот минерал является очень хрупким. Поэтому из него делают стержни для карандашей.

К химическим свойствам минерала можно отнести образование соединений включения со многими веществами, такими как соли и Минерал не растворяется в кислотах.

Формула графита - C, то есть он является одной из знаменитого шестого элемента таблицы Менделеева - углерода.

Алмаз: история и свойства минерала

История алмаза очень необычна. Считается, что первый алмаз был найден в Индии. В то время человечество так и не смогло понять всю силу этого камня. Геологам было лишь известно, что этот камень очень твердый и прочный. До 15 века алмазы стоили намного меньше, чем изумруды и рубины. И только потом неизвестный ювелир в процессе работы с камнем придал ему красивую огранку, которую позже стали называть бриллиантовой. Вот тогда-то камень и показал себя во всей своей красе.

Главным образом алмазы используют в промышленности. Этот минерал самый прочный на всем свете, именно поэтому из него делают абразивы, резцы для обработки прочных металлов и многое другое.

Как нам уже известно, формула графита в химии - C, такую же формулу имеет и алмаз.

Различия между алмазом и графитом

Несмотря на то что минералы имеют схожие химические формулы, они резко отличаются друг от друга как внешним видом, так и с химической точки зрения.

Прежде всего, алмаз и графит имеют совершенно различную друг от друга структуру. Ведь графит состоит из сетки шестиугольников, тогда как алмаз имеет кубическую кристаллическую структуру. Хрупкость графита обуславливается тем, что связь между его слоями нарушить очень легко, его атомы спокойно отделяются друг от друга. Из-за этого графит легко поглощает свет, сам он очень темный, в отличие от алмаза.

Отличается тем, что один атом углерода окружен еще четырьмя атомами в виде четырехгранного треугольника или пирамиды. Каждый атом находится на одинаковом расстоянии друг от друга. Связь у атомов очень крепкая, именно поэтому алмаз является таким твердым и прочным. Еще одно свойство алмаза - это то, что он может проводить свет, в отличие от графита.

Странно ли, что формула графита совпадает с формулой алмаза, но при этом минералы совершенно разные? Нет! Ведь алмаз создается природой при огромном давлении, а затем очень быстром охлаждении, тогда как графит возникает при низком давлении, но очень высокой температуре.

вещества?

Аллотропные вещества - это очень важное понятие в химии. Это основа основ, которая позволяет отличать вещества друг от друга.

В школе аллотропные вещества изучают на примере графита и алмаза, а также их различии. Итак, изучив различия алмаза и графита, можно сделать вывод, что аллотропия - это существование в природе двух и более веществ, которые различаются по своему строению и свойствам, но имеют схожую химическую формулу или относятся к одному химическому элементу.

Получение алмаза из графита

Формула графита - C - позволила ученым произвести множество опытов, вследствие чего были найдены аллотропные вещества графита.

Преподаватели рассказывают и школьникам, и студентам о том, как ученые пытались создать алмазы из графита. Эта история очень интересная и увлекательная, а еще она позволяет запомнить о существовании таких аллотропных веществ, как графит и алмаз, и об их различиях.

Некоторое время назад ученые пытались создать алмазы из графита. Они считали, что если формула алмаза и графита одинакова, то они смогут создать алмаз, ведь камень очень дорогой и редкий. Теперь мы знаем, что минерал алмаз появляется в природе при высоком давлении и мгновенном охлаждении. Поэтому ученые решили взорвать ѓрафит, тем самым создав нужные условия для образования алмаза. И на самом деле случилось чудо, после взрыва на графите образовались очень маленькие кристаллы алмаза.

Применение графита и алмаза

На сегодняшний день и графит, и алмаз используют главным образом в промышленности. Но примерно 10 % от всей добычи алмазов идет на ювелирное дело. Чаще всего из графита изготавливают карандаши, так как он очень хрупкий и ломкий, при этом оставляет следы.

Алмаз известен людям с незапамятных времен. Старинные легенды позволяют предполагать, что первые находки алмазов в Индии относятся к третьему тысячелетию до нашей эры. Не менее чем за пять веков до начала современного летосчисления с алмазом познакомились древние греки, поскольку к этому времени относится греческая бронзовая статуэтка, глазами которой служат два неотшлифованных алмаза. Высказываются предположения, что в Грецию алмазы были завезены из Индии. В Европу заметное количество индийских алмазов начало поступать только в XIII в. Долгое время исключительно высокая твердость камня являлась непреодолимым препятствием для европейских ювелиров, и все попытки обработать этот минерал терпели неудачу. Лишь в середине XV в. голландцу Ван-Беркену удалось огранить алмазы, шлифуя их друг о друга. Долго оставался неизвестным и химический состав таинственного камня, не поддававшегося воздействию самых сильных кислот и щелочей. Некоторые ученые даже думали, что алмаз состоит из особого химического элемента - алмазной земли. В середине XVII в. во Флоренции ставились опыты по нагреванию в закрытых сосудах алмазов и рубинов. При этом было установлено, что рубины не претерпевали никаких изменений, а от алмазов не оставалось "ни малейшего следа". Это казалось совершенно необъяснимым, и лишь много позднее выяснилось, что кристаллы алмаза, нагреваемые в окружении кислорода, попросту сгорают.

Показательное сжигание алмаза в конце XVIII в. было проведено в Петербургском горном училище (ныне Ленинградский горный институт). Этот опыт, по-видимому, имел целью доказать невозможность искусственного получения крупных алмазов путем сплавления мелких кристаллов. К этому же времени относятся многочисленные опыты по сжиганию алмазов, проводившиеся в различных странах Западной Европы.

Большое внимание этим опытам уделял и знаменитый французский химик А. Лавуазье, поскольку "бесследное" исчезновение алмаза при нагревании противоречило закону сохранения материи. Он смог определенно сказать лишь то, что алмаз принадлежит к классу горючих тел и что продуктом сгорания его является газообразное вещество. Отметив возможное родство алмаза с углеродом, ученый все же не решился отождествить сверкающий камень с углем и не сделал окончательного вывода о составе алмаза. Он писал, что, может быть, никогда нельзя будет определить состав этого минерала.

Однако уже на рубеже XVIII и XIX вв. химическая природа алмаза была точно установлена. Английский химик П. Теннан в 1797 г. сжег алмаз в плотно закрытом золотом сосуде, заполненном кислородом, и установил, что образовавшийся при этом газ является двуокисью углерода. Поскольку первоначально в сосуде кроме алмаза и кислорода ничего не было, то, следовательно, алмаз в химическом отношении является чистым углеродом. Чтобы окончательно убедиться в правильности сделанного вывода, П. Теннан определил количество углерода в заполняющем сосуд углекислом газе. Оказалось, что оно в точности соответствует массе сгоревшего алмаза.

Таким образом, алмаз состоит из одного химического элемента - углерода. Аналогичный химический состав (не считая случайных и механических примесей) имеют графит, древесный и каменный уголь, сажа, т. е. весьма распространенные и далеко не самые привлекательные по внешнему виду вещества. А если это так, то в чем же причина совершенно различного облика столь разных физических и химических свойств этих веществ?

Исключительную по своей прозорливости мысль высказал М. В. Ломоносов: причиной необычайной твердости алмаза является "сложение его из частиц, тесно соединенных". Предвидение гениального ученого подтвердилось почти через два столетия, в начале XX в., когда с помощью рентгеновских лучей удалось расшифровать атомную структуру алмаза и графита. Были установлены существенные различия в пространственном расположении слагающих эти вещества элементарных частиц - атомов.

В алмазе атомы углерода размещаются очень плотно, причем каждый из них прочно связан с четырьмя окружающими его атомами (рис. 13).

Совершенно иной вид имеет кристаллическая решетка графита. Структура ее образована параллельными слоями сеток, состоящих из шестиугольников с атомами углерода в вершинах. Слои отстоят на 3,39 Å (Å - сокращенное обозначение единицы длины, равной 10 -8 см, которая называется "ангстрем" ) один от другого и последовательно сдвинуты, так что в проекции совмещается только половина атомов углерода, а остальная часть их проецируется в центре ячеек сетки нижних и верхних слоев (рис. 14). Связь между слоями атомов в графите осуществляется посредством легкоподвижных электронов. Такая связь придает веществу металлические свойства: непрозрачность, блеск, высокую электропроводность. Атомы в каждом отдельно взятом слое связаны достаточно прочно, а связь между слоями слабая. Этим обусловливается весьма высокая способность расщепляться на тонкие пластинки и чрезвычайно малая твердость графита по направлению, параллельному слоистости кристаллической решетки минерала.

Образование одинаковых по химическому составу веществ, различающихся кристаллической структурой решетки, называется полиморфизмом, а сами такие вещества называются полиморфными модификациями. Следовательно, алмаз и графит являются полиморфными модификациями углерода.

Рассмотрим важнейшие свойства алмаза и проследим их связь с внутренним строением минерала.

Хотя алмаз в чистом виде состоит только из атомов углерода, реальные природные кристаллы этого минерала постоянно содержат примеси других веществ. Минимальные количества примесей характерны для бесцветных и слабоокрашенных прозрачных алмазов. При сжигании таких камней количество золы не превышает 0,02-0,05% от их массы. В замутненных и особенно в непрозрачных разновидностях алмаза содержание золы достигает нескольких процентов.

Спектральным анализом в составе золы установлены кремний, магний, кальций, алюминий, железо, титан и некоторые другие химические элементы.

Наряду с мельчайшими включениями в алмазах нередко присутствуют и сравнительно крупные посторонние частицы: чаще всего графит, несколько реже минералы, являющиеся по химическому составу силикатами (оливин, пироксены), алюмосиликатами (гранаты) и сложными окислами (хромшпинелиды). В крупных кристаллах алмаза довольно обычны также включения его мелких кристалликов.

Плотность алмаза около 3,52. Эта величина типична для чистых хорошо образованных кристаллов. У мелкозернистых агрегатов, часто содержащих включения графита и обладающих не вполне массивным сложением, плотность существенно ниже и у отдельных разновидностей карбонадо опускается до 3,0. Для сравнения укажем, что плотность графита не превышает 2,23. Таким образом, "рыхлость" атомной структуры графита привела к более чем полуторакратному снижению плотности.

Цвет и особенности светопреломления алмаза рассмотрены в предыдущей главе, а здесь мы остановимся еще на одном весьма интересном и важном его свойстве, которое также тесно связано с внутренним строением. Речь пойдет о люминесценции. Люминесценцией называется способность некоторых природных и синтетических веществ светиться под действием рентгеновских, ультрафиолетовых и катодных лучей, что принято обозначать специальными терминами: рентгенолюминесценция, фотолюминесценция, катодолюминесценция.

Большинство алмазов обладает всеми тремя видами люминесценции. Некоторые кристаллы при этом светятся голубым, другие зеленым, желтым или розовым светом. Темноокрашенные (бурые, черные и т. п.) и ожелезненные кристаллы, а также некоторые прозрачные их разновидности не люминесцируют.

Наиболее изучены рентгено- и фотолюминесценция алмаза, которые используются при проведении геологопоисковых работ, о чем подробнее рассказывается в заключительных главах. Некоторые исследователи связывают люминесценцию с присутствием посторонних примесей, другие указывают на причинную связь этого явления со специфическими особенностями кристаллической решетки минерала.

Чистые кристаллы прозрачны не только для световых, но и для рентгеновских лучей, что позволяет легко определять алмазы среди сходных по внешнему облику минералов, а также отличать бриллианты от всевозможных подделок. А вот ультрафиолетовые лучи многие алмазы совершенно не пропускают.

Твердость является, как уже отмечалось, весьма важным свойством алмаза, определяющим его исключительно большую роль в производственной деятельности человека. Под твердостью обычно подразумевается сопротивление одного тела проникновению в него другого. Для качественного определения относительной твердости минералов широко используется так называемая шкала твердости (шкала Мооса), предложенная в начале XIX в. Шкала включает десять минералов-эталонов, расположенных в порядке возрастания твердости. При этом порядковые номера эталонов принимаются в качестве баллов твердости.

Минералогическая шкала твердости

Твердость веществ на основе шкалы Мооса определяют, с усилием проводя ребром или острым сколом изучаемого объекта по гладкой поверхности какого-либо эталонного минерала. Если вещество тверже взятого эталона, то на поверхности последнего остаются бороздки, царапины. При меньшей твердости изучаемого вещества относительно минерала-эталона оно не оставляет царапин на его поверхности. При равной твердости объекта и эталона неглубокие царапинки остаются на каждом из них. Алмаз, обладающий наивысшей твердостью, оставляет глубокие борозды на всех минералах и при этом сам не претерпевает ни малейших изменений.

Существуют и более точные, но вместе с тем и значительно более сложные способы определения твердости. Не останавливаясь на их описании, упомянем о двух наиболее широко применяемых. Один из них основан на учете скорости сошлифовки (обдирки) испытываемого вещества при стандартных условиях. Другой способ заключается в измерениях, выполняемых с помощью специального прибора - твердометра. Рабочим органом его служит четырехгранная (а для замеров на особо твердых телах трехгранная) алмазная пирамидка. Острие пирамидки под определенной нагрузкой вдавливают в полированную поверхность изучаемого объекта и по величине получающегося углубления вычисляют показатель твердости (микротвердость) вещества в килограмм-силах на квадратный миллиметр. Величина этого показателя составляет для талька 2,4, кальцита 109, апатита 536, кварца 1120, корунда 2060, алмаза 10060.

Твердость алмазов, как и других минералов, не остается постоянной на различных гранях одного и того же кристалла. Ювелиры давно заметили, что при шлифовке кристаллов алмаза наименьшее сопротивление оказывают грани куба, несколько большее - ромбододекаэдрические грани и наибольшее - грани октаэдра. Детальными исследованиями в наше время установлены ощутимые колебания твердости даже по различным направлениям в пределах единой грани кристалла.

Доказано, что твердость различных граней алмазных кристаллов находится в прямой зависимости от плотности расположения атомов углерода на плоскостях, соответствующих той или иной грани. Такие плоскости, включая не только поверхности граней, но и бесчисленное множество параллельных им плоскостей внутри кристалла, называются плоскими сетками. Количество атомов, приходящееся на единицу поверхности плоской сетки, принимается за ее плотность. Плотность октаэдрических, ромбододекаэдрических и кубических сеток в алмазе выражается отношением 2,308:1,414:1. В этой же последовательности, как уже отмечалось, убывает и твердость граней кристаллов.

Аналогичной закономерности подчиняется распределение твердости и по различным направлениям в пределах каждой отдельно взятой грани: относительно пониженной твердостью обладают те направления, которые характеризуются наибольшими расстояниями между атомами (рис. 15).

Широко известны существенные различия в средней твердости алмазов из разных месторождений. Основными причинами этого являются, по всей вероятности, наличие или отсутствие некоторых примесей в алмазах и изменчивость степени совершенства кристаллической решетки, которая в зависимости от физических и химических условий кристаллизации алмаза может иметь большее или меньшее число всевозможных дефектов.

Следует подчеркнуть, что даже самые "мягкие" алмазы во много раз превосходят по твердости корунд и все остальные минералы.

Наряду с исключительно высокой твердостью алмаз обладает свойством раскалываться под воздействием достаточно сильных и резких механических воздействий, ударов. При этом независимо от внешней формы алмазов они, как правило, раскалываются по плоскостям, параллельным граням октаэдра. Способность кристаллов колоться по определенным поверхностям, параллельным их граням, в минералогии называется спайностью. Поскольку октаэдр имеет восемь попарно параллельных граней, то, следовательно, спайность алмаза параллельна четырем плоскостям.

Спайность по плоскостям октаэдра у кристаллов алмаза обусловлена неравномерным расположением парных плоских атомных сеток, ориентированных параллельно граням октаэдра. Расстояние между двумя парами этих сеток почти втрое больше расстояния между сетками, образующими каждую пару. Спайность алмаза при его обработке позволяет вместо сошлифовки откалывать кусочки кристалла, обладающие дефектами или мешающие приданию необходимой формы бриллиантам и всевозможным техническим изделиям из алмаза (фильерам, резцам и др.).

Алмаз является хорошим проводником тепла. При трении он электризуется. Выше уже упоминалось, что некоторые алмазы обладают полупроводниковыми свойствами и относятся к полупроводникам р-типа. Энергия активации акцепторов у них составляет 0,35-0,40 эв, а удельное сопротивление в интервале температур от -100 до 600° С изменяется в пределах 250-750 ом*см.

Предполагается, что полупроводниковые свойства алмазов обусловлены наличием в них примеси бора.

Весьма важным и интересным свойством алмазов является также возникновение световых вспышек и импульса электрического тока при попадании в кристалл быстрых заряженных частиц. Световые вспышки (сцинтилляции) в алмазах настолько интенсивны, что любой источник ядерного излучения с энергией выше лишь нескольких тысяч электрон-вольт надежно регистрируется при использовании обычных фотоэлектронных умножителей.

Интенсивность сцинтилляции мало зависит от энергии электронов. Она почти постоянна при температуре ниже -50° С, но с повышением температуры убывает и исчезает полностью при 100° С. Какой-либо связи между сцинтилляционной способностью и другими свойствами алмаза пока не установлено. Исследования в интервале -125÷+ 230°С показали, что счетная способность и фотопроводимость алмаза увеличиваются с понижением температуры. Достоинствами алмазных счетчиков являются прочность, стабильность, долговечность даже в весьма агрессивных средах, а также в окружении сильных магнитных и гравитационных полей.

Алмаз не поддается воздействию самых сильных кислот (соляной, серной, азотной, плавиковой), даже доведенных до кипения. Не реагирует он и со щелочами. И лишь в расплавах едких щелочей, селитры или соды алмаз окисляется и сгорает.

Опыты по нагреванию алмаза, начатые в середине XVII в. во Флоренции, были продолжены в наше время. Установлено, что при нагреве на воздухе до 850-1000° С алмаз сгорает. В струе чистого кислорода он загорается при 720-800° С. Начав гореть при слабом красном калении, камень быстро раскаляется добела и горит голубым пламенем.

Нагревание при нормальном атмосферном давлении без доступа кислорода до температуры выше 1200-1500° С приводит к превращению алмаза в графит. Процесс этот довольно медленный, причем скорость превращения возрастает при повышении температуры. Графитизация начинается на вершинках и ребрах, распространяется на всю поверхность кристалла, а затем и на внутренние части его. В итоге вместо сверкающего кристалла алмаза получаем тусклый черный агрегат графита, имеющий форму исходного камня, но несколько большего объема (из-за различий в плотности алмаза и графита). Обратного перехода графита в алмаз в условиях атмосферного давления осуществить не удается ни путем нагрева или охлаждения, ни какими-либо другими способами.

Таким образом, при атмосферном давлении устойчивой модификацией углерода является графит, а алмаз в этих условиях представляет собой неустойчивую (метастабильную) модификацию данного вещества. Если так, то возникают два вполне естественных вопроса. Во-первых, почему алмаз переходит в графит только при сильном нагреве, а при обычной температуре не изменяется на протяжении тысяч и, как увидим в последующих главах, даже сотен миллионов лет? Во-вторых, при каких же условиях происходит кристаллизация углерода в форме алмаза?

Ответ на первый из поставленных вопросов дают результаты исследований физико-химических процессов образования горных

Штриховые участки границ экспериментального подтверждения не имеют.

пород и минералов. Установлено, что реакции полиморфного превращения (в отличие, например, от плавления) протекают с большим трудом и незначительной скоростью. Для начала перехода одной модификации в другую, более устойчивую, необходимо, чтобы составляющие кристалл частицы (атомы, ионы) обладали определенным количеством энергии, достаточным для преодоления "энергетического барьера" при перестройке кристаллической структуры. Чем ниже температура, тем меньше вероятность преодоления такого "барьера" и скорость превращения.

При низких температурах скорость превращения может стать равной нулю и тогда метастабильная модификация будет сохраняться неопределенно долго.

Малая скорость превращения характерна для случаев, когда полиморфные модификации сильно различаются по своему кристаллическому строению. Именно благодаря очень сильным различиям в структуре кристаллических решеток не происходит самопроизвольного превращения алмаза в графит при обычных температурах на земной поверхности.

Ответ на второй вопрос - об условии кристаллизации углерода в виде алмаза - был получен в итоге теоретических исследований, результаты которых полностью подтвердились экспериментальными проверками.

Советский ученый О. И. Лейпунский на базе теоретических предпосылок рассчитал, что для превращения графита в алмаз в твердой фазе необходимы давление около 60000 кгс/см 2 и температура 1700-1800° С. Он указывал также на возможное образование алмаза и при несколько меньших давлениях, если использовать вещества, характеризующиеся относительно невысокой температурой плавления и достаточной растворимостью углерода. В качестве одного из таких веществ называлось железо.

Таблица 2. Сопоставление некоторых свойств алмаза и графита

Свойства Алмаз Графит
Структура Атомы углерода размещаются плотно и каждый из них прочно связан с четырьмя окружающими атомами Слоистая, образованная параллельными слоями шестиугольной сетки; связь между слоями слабая
Твердость по шкале Мооса 10 (наивысшая) 1 (минимальная)
Плотность 3,47-3,56 2,21-2,23
Ударная вязкость Хрупкий Вязкий
Спайность Средняя по четырем направлениям (плоскостям) Весьма совершенная по одной плоскости
Окраска Бесцветная, желтая, бурая, серая, реже черная, синяя и красная Серо-стальная и черная
Блеск Сильный (алмазный) Металлический
Электропроводность Слабая (полупроводник р-типа, при трении электризуется) Хорошая
Химическая стойкость Не поддается воздействию кислот при комнатной температуре и кипячении. Сгорает в расплавах щелочей. На воздухе сгорает при 850-1000° С, в струе кислорода - при 720-800° С. Без доступа воздуха при нагревании выше 1200° С переходит в графит С кислотами не реагирует. Сгорает в расплавах щелочей. Плавится при 3850 ±50° С

В конце 50-х-начале 60-х годов XX в. термодинамические расчеты стабильности алмаза и графита при различных давлениях и температурах проводились многими исследователями.

Расчеты выполнялись с различными степенями приближения, но все они свидетельствуют о том, что образование алмаза возможно только при высоких давлениях, измеряемых десятками тысяч килограммов на квадратный сантиметр (рис. 16). Теоретические выводы о необходимости для образования алмаза высоких давлений полностью подтверждены экспериментально (рис. 17) и нашли широкое практическое применение. Заводы по изготовлению искусственных алмазов работают сейчас во многих странах мира, и общая продукция их исчисляется десятками миллионов карат. Подробнее эти вопросы рассматриваются в следующей главе.

Главнейшие различия между рассмотренными полиморфными модификациями углерода суммированы в табл. 2.

Недавно появились сообщения о том, что в Институте элементоорганических соединений Академии наук СССР получена новая, третья форма кристаллического углерода - карбин. В качестве исходного вещества при синтезе использовался ацетилен. Карбин, как и некоторые разновидности алмаза, обладает свойствами полупроводника и фотопроводимостью. Отмечалось присутствие близких к карбину форм кристаллического углерода в отдельных метеоритах.

Высокая химическая устойчивость и жаропрочность, сравнительно малая плотность, абсолютная немагнитность и многие другие свойства кристаллического углерода стимулируют поиски новых углеродных материалов. Весьма перспективным направлением таких исследований является синтез гибридных веществ, сочетающих отдельные свойства алмаза, графита и карбина. Первые шаги в этом направлении уже сделаны. Из каменного угля получено углеродное стекло, сочетающее жаропрочность и химическую устойчивость графита со свойствами полупроводника и обладающее еще меньшей плотностью. Поиски продолжаются.