Возобновляемые источники энергии в регионах Российской Федерации: проблемы и перспективы. Возобновляемая энергия

Согласно федеральному закону об электроэнергетике к возобновляемым источникам энергии (ВИЭ) относятся: энергия солнца, энергия ветра, энергия воды, в том числе энергия сточных вод (за исключением случаев использования такой энергии на гидроаккумулирующих электроэнергетических станциях), энергия приливов, энергия волн водных объектов, в том числе водоемов, рек, морей, океанов; геотермальная энергия с использованием природных подземных теплоносителей, низкопотенциальная тепловая энергия земли, воздуха, воды с использованием специальных теплоносителей; биомасса, включающая в себя специально выращенные для получения энергии растения, в том числе деревья, а также отходы производства и потребления, за исключением отходов, полученных в процессе использования углеводородного сырья и топлива; биогаз, газ, выделяемый отходами производства и потребления на свалках таких отходов, газ, образующийся на угольных разработках.

Объемы энергии из возобновляемых источников и существующие технологии уже сегодня позволяют полностью обеспечить человечество необходимой энергией .

К сожалению, не все возможные технологии экономически выгодны сегодня. Поэтому для оценки возможностей ВИЭ использует такое понятие, как экономический потенциал . Так в России экономический потенциал ВИЭ составляет около 25%. Иными словами, до четверти всей необходимой энергии мы могли бы получать из возобновляемых источников экономически доступными способами.

ВИЭ или ядерная энергетика?

Руководство нашей страны по-прежнему делает ставку на развитие атомной, угольной и крупной гидроэнергетики. Несмотря на то, что сектор возобновляемой энергетики является одним из наиболее динамично развивающихся секторов экономики во всем мире, правительство РФ планирует к 2020 году с помощью ВИЭ получать всего 4,5% энергии.

При этом правительство понимает, что дешевое углеводородное сырье - основа нынешней энергетики страны – в конечно итоге будет исчерпано. В долгосрочной перспективе государство делает ставку на плутониевую и термоядерную энергетику.

Но плутониевые технологии не проработаны с инженерной точки зрения и крайне опасны.

То же касается и термоядерной энергии. В 2007 году в исследовательском центре Кадараш на юге Франции началось строительство международного экспериментального термоядерного реактора. В проекте под названием ITER (ИТЭР) участвует несколько стран, в том числе Россия. Задача проекта - доказать возможность коммерческого использования энергии термоядерного синтеза для получения электроэнергии. До сих пор решить эту задачу не удалось. Но даже если эксперимент увенчается успехом, мощность всех термоядерных установок к 2100 году, по оценке одного из руководителей проекта Е.П. Велихова, вряд ли превысит 100 ГВт, что ничтожно мало для решения энергетической проблемы человечества. Для сравнения: современная установленная мощность электростанций мира составляет порядка 4000 ГВт.

У человечества есть единственный реальный путь решения проблемы энергетической безопасности и спасения климата - переход на возобновляемые источники энергии при активном применении энергосберегающих технологий . Технологии, финансовые ресурсы для такого перехода есть.

Показатели использования ВИЭ в России

Сегодня вся установленная электрическая мощность российской электроэнергетики составляет 200 ГВт. К 2020 году в России мощность электростанций на основе ВИЭ¹ по сценарию Энергетической революции Гринпис может возрасти практически с нуля до 40 ГВт². Из них ветростанции - 20 ГВт, теплоэлектростанции (ТЭС) на основе биомассы - 13 ГВт, остальное - солнечные, геотермальные и малые гидроэлектростанции.

Предполагается также, что к 2020 году электростанции на основе ВИЭ будут производить 13% электроэнергии.

Осуществить сценарий Гринпис вполне реально. К примеру, Китай к 2020 году планирует повысить долю ВИЭ до 15%, Египет - 20%, Евросоюз - до 30%. Увы, планы российских властей существенно скромнее - 4,5%.

При этом в нынешних экономических условиях ВИЭ могут производить не менее 25% первичной энергии. А значит, цели Гринпис (доля ВИЭ к 2020 году в производстве первичной энергии - 14% и в электроэнергетике - 13%) вполне достижимы.

¹ Здесь крупная равнинная гидроэнергетика не относится к ВИЭ.

² Из них ветростанции – 20 ГВт, теплоэлектростанции (ТЭС) на основе биомассы – 13 ГВт, остальное – солнечные, геотермальные и малые гидроэлектростанции.

Подробности Опубликовано 21.07.2015 19:21

Возобновляемыми принято называть те ресурсы планеты, которые могут восстанавливаться природным путем. Например: ветер, свет солнца, приливы, геотермальное тепло. Стоит отметить, что эти источники называются возобновляемыми, исходя из масштабов человеческого времени. Ведь даже солнце однажды перестанет светить, но произойдет это лишь через несколько миллиардов лет.

Сегодня существует уже более 20 стран, доля возобновляемых источников энергии, в общем энергетическом балансе которых превышает 20 %. Среди них: Исландия, Норвегия, Шотландия, Дания, Германия и другие. Существуют и .

Электроэнергия возобновляемых источников может быть использована как в промышленных масштабах всей страны, так и в отдельных сельских регионах. Генеральный секретарь ООН, Пан Ги Мун заявил о том, что возобновляемые источники энергии помогут бедным странам во всем мире стать процветающими.

К основным возобновляемым источникам планеты относят:

  • Реки и океаны
  • Ветер
  • Солнце
  • Геотермальные источники
  • Биомассу

Энергия воды

Отрасль энергетики, занимающаяся преобразованием энергии воды в электроэнергию, называется гидроэнергетика.

Существует несколько разновидностей источников энергии воды:

Энергия рек
Энергия волн
Энергия приливов

Ветряки также устанавливаются в океане, где энергия ветра обычно выше из-за отсутствия преград.

Наземные ветряные турбины

Солнечная энергия

Солнечная энергия может быть напрямую преобразована в электроэнергию с помощью солнечных батарей. Или же использоваться для нагрева воды, полученный пар приводит в движение турбины. Солнечный свет может попадать прямо на солнечные батареи, или же предварительно концентрироваться с помощью линз.


Концентрированная солнечная электростанция (CSP)

Фотоэлектрическая солнечная электростанция
Энергия солнца может быть использована для искусственного фотосинтеза. Это когда в результате действия солнца, происходит расщепление воды на кислород и водород.
На данный момент наибольшим препятствием развития солнечной энергетики остается высокая цена на солнечные панели. Ученые продолжают поиск новых материалов, которые смогут снизить цены на солнечные панели.

Геотермальная энергия

Наша земля является огромным источником тепловой энергии. Эта энергия исходит от ядра, а также является результатом распада органических веществ.

Вода, нагретая в недрах земли, может быть использована для отопления домов или преобразована в электроэнергию. Как получают электроэнергию из геотермальных источников читайте

Энергия, полученная за счёт возобновляемых источников, сегодня уже не просто предмет научных изысканий, а фактор, меняющий расклад сил на энергетических рынках, оказывающий давление на цену традиционных энергоносителей и определяющий экономическое будущее стран. Страны – импортёры традиционного топлива становятся всё более независимыми в своей энергетической политике от странэкспортёров, а те, в свою очередь, теряют основные рычаги влияния. Мир меняется, и ископаемое топливо постепенно перестаёт быть определяющим фактором геополитики: борьба за месторождения нефти и газа начинает уходить в прошлое.

Текст: Екатерина Борисова

Возобновляемые источники энергии (ВИЭ) – это виды энергии, непрерывно возобновляемые в биосфере Земли. К ним относятся энергия солнца, ветра, воды (включая энергию приливов), геотермальная энергия. Как возобновляемый источник энергии также используется биомасса, из которой производятся биоэтанол и биодизель. Причём это необязательно должны быть специально выращенные для получения энергии растения. Источниками энергии могут выступать водоросли, отходы производства и потребления.

В России возобновляемые источники энергии в зависимости от подхода представлены либо широко, либо вообще никак. Например, согласно данным Минэнерго доля ВИЭ в энергобалансе России составляет около 18%. Из них 17% приходится а энергию, вырабатываемую за счёт крупных гидроэлектростанций. Однако чаще, когда речь заходит о возобновляемых источниках энергии, вклад крупных ГЭС не учитывается, так какидоля крупной гидроэнергетики обычно упоминается отдельной графой. Исходя из этих позиций, доля ВИЭ в России – меньше 1%. Это, конечно, несравнимо с развитием энергетики на основе ВИЭ в других ведущих странах мира.

ВПЕРЕДИ ПЛАНЕТЫ ВСЕЙ… КИТАЙ
На первом месте по инвестиционным вложениям в развитие новых технологий в сфере энергетики стоят Китай, США и страны Евросоюза. Китай, являясь лидером по выбросам парниковых газов за счёт сжигания на своих тепловых станциях преимущественно угля, тем не менее, лидирует и в так называемых зелёных инвестициях. В 2013 году он впервые стал лидером по объёму инвестиций в «зелёную энергетику», несмотря на общемировое снижение инвестиционной активности в этой сфере. В 2013 году инвестиции КНР оценивались в 56,3 миллиарда долларов, что составляет 61% от общего объёма инвестиций по развивающимся странам. И это больше, чем инвестировали европейские страны вместе взятые. Более того, эти инвестиции впервые в истории превысили вложения Китая в топливную энергетику.

К 2020 году Китай предполагает повысить долю неисчерпаемых источников энергии до 15% и снизить углеродоёмкость экономики на 40–45% относительно уровня 2005 года. Это очень позитивные для всей планеты планы, если учесть, что треть ежегодно выделяющихся парниковых газов появляется за счёт работы именно китайской индустрии. Уже к концу 2015 года доля неископаемого топлива в структуре потребления этой страны была увеличена до 12%, а потребление угля уменьшилось на 1,7 процентных пункта (до 64,4%). Эти данные сообщил начальник Государственного управления по делам энергетики КНР Нур Бекри.

Во многом благодаря таким активным действиям Китая рост мировой экономики в 2014 году впервые (!) не сопровождался ростом выбросов углекислого газа. Это свидетельствует из отчёта, представленного организацией «Сеть по политике возобновляемой энергии для XXI века», которая работает под эгидой ООН.

Согласно предположениям Всемирного фонда дикой природы (WWF), к 2050 году 80% китайской энергетики может быть переведено на ВИЭ, если программы по развитию энергоэффективности не будут тормозиться. В результате эмиссия углерода от производства энергии к 2050 году может быть на 90% меньше, чем в настоящее время, без ущерба для стабильности электрической сети или замедления экономического роста. Возможно, этот прогноз слишком оптимистичный, но само по себе его появление показательно: китайский размах по внедрению ВИЭ поражает многих.

Сегодня не только развитые, но и многие развивающиеся страны имеют в своих планах энергетического развития обязательный пункт об увеличении доли ВИЭ. Даже Индия, в которой потребление самого грязного вида топлива – угля – до сих пор лишь росло, планирует к 2030 году увеличить общий объём вырабатываемой на основе ВИЭ (включая ГЭС) электроэнергии со 130 ГВт до 400 ГВт и уже сейчас значительно обогнала нас по этим показателям.

Ведущие мировые энергетические концерны также всё больше смещают акцент своих исследований и производств на возобновляемые источники энергии. Так, французская нефтегазовая компания Total приобрела контрольный пакет акций американской Sunpower, которая производит солнечные батареи.

ПОЧЕМУ ЭТО ТАК ВАЖНО?
Традиционное, ископаемое топливо, как известно, имеет тенденцию к исчерпанию, а его сжигание усугубляет парниковый эффект на планете. Две трети выбросов парниковых газов, которым мы обязаны глобальному потеплению, приходятся именно на традиционную энергетику. Дальнейшее повышение приземной температуры и повышение концентрации СО2 с большой вероятностью приведёт к фатальным последствиям не только для некоторых видов флоры и фауны, но и негативно скажется на благополучии населения многих стран. В частности, повышение кислотности верхнего слоя океана из-за дальнейших выбросов СО2 будет сопровождаться массовой гибелью значительной части морской биоты и в первую очередь кораллов, что повлечёт за собой разрушение экономики многих развивающихся государств, основанной на туризме и прибрежном рыболовстве. Таяние ледников и вызванное этим повышение уровня Мирового океана будет означать в некоторых случаях затопление прибрежных территорий и даже целых стран. Особо уязвимы с этой точки зрения Бангладеш и государства Океании. И это лишь небольшая часть возможных негативных последствий.

Помимо своей неисчерпаемости и экологичности, возобновляемые источники энергии имеют ещё одно качество – альтернативность, что позволит в будущем странам, не обладающим значительными запасами ископаемого топлива, обеспечивать энергетическую безопасность и преодолевать свою энергозависимость от экспортёров энергоносителей. И это одно из не последних по значимости объяснений, почему использование ВИЭ активно развивается в Европе и, например, в Китае и так мало им уделяется внимания в России. Согласно российской программе развития энергетики к 2020 году доля ВИЭ без учёта крупных ГЭС в общем энергобалансе страны должна быть доведена лишь до 2,5%, тогда как, в частности, в Германии к 2020 году долю ВИЭ планируется довести до 30%.

На данный момент доля солнечной и ветровой энергетики в общем энергобалансе Германии уже составляет более 15%. В целом по Европейскому союзу согласно Статистическому энергетическому ежегоднику (Global Energy Statistical Yearbook 2015) доля ВИЭ (включая ГЭС) в 2014 году составляла 30%, причём в некоторых европейских странах она доходила до 98% (Норвегия).

ОГРАНИЧЕНИЯ ВИЭ
Однако современные технологии пока ещё не позволяют полностью и повсеместно переориентироваться на применение этих энергоисточников. Для их использования есть существенные ограничения.

Например, развитие гидроэнергетики возможно не везде в связи с недостаточностью речных сетей. Но даже если реки имеются, строительство ГЭС не всегда оправданно. Возведение крупных ГЭС нарушает местные экосистемы и биоценозы, а также требует переселения иногда значительных масс населения. В то же время выработка малых ГЭС сильно зависит от режима реки – в маловодные периоды такие ГЭС резко снижают выработку или вообще останавливаются. Активнее всего крупная гидроэнергетика сегодня развивается в Китае, и здесь же построены самые крупные ГЭС в мире. Мощность китайских ГЭС сегодня составляет 260 ГВт, а к 2020 году её планируется увеличить до 380 ГВт. Для сравнения, мощность российской гидроэнергетики – лишь 46 ГВт (5-е место в мире). Такое бурное развитие крупной гидроэнергетики Китая вызывает протесты экологов, местного населения, вынужденного переселяться в новые места, а также провоцирует споры и конфликты с соседними странами по поводу изменения режима стока трансграничных рек, объёма и качества воды.

На сегодняшний день, по разным данным, от 30 до 70% рек Китая серьёзно загрязнены, некоторые реки больше не впадают в море, значительно уменьшилось их биоразнообразие. Гидротехническая активность КНР влияет на состояние рек в Индии, Бангладеш, России, Казахстане, Вьетнаме, Лаосе, Мьянме, Таиланде и Камбодже.

Что касается энергии приливных волн и геотермальных источников, то она также не везде доступна. Хотя, например, в Исландии электроэнергетика по большей своей части питается от геотермальных источников.

На энергию ветра приходится рассчитывать тоже в ограниченных масштабах. Во-первых, не везде есть достаточный ветровой потенциал и пустынные территории, пригодные для установки ветряков. К тому же ветровые и солнечные станции до сих пор являются одними из самых дорогих источников электроэнергии. А использование солнечных батарей в северных широтах нерентабельно из-за недостаточного количества солнечных дней в году. Кроме того, выработка солнечной энергии сильно зависит от времени суток, сезона и погодных условий.

Стоит также упомянуть, что малые ГЭС, ветроустановки и гелиоустановки не могут стать основными источниками энергии для крупных электросетей из-за нестабильности выработки ими энергии. Если их доля начинает превышать 20% мощности энергосистем, возникает необходимость ввода дополнительных регулирующих мощностей. Пока лучше всего с задачей регулирования справляются крупные ГЭС, которые в период пиковых нагрузок могут увеличить выработку энергии за несколько минут, тогда как даже ТЭС (не говоря уж об АЭС) для этого требуются часы.

Тем не менее, в Европе активнее всего развиваются именно ветро- и солнечная энергетика. Более того, Евросоюзу даже удалось частично решить проблему регулирующих и накопительных мощностей в «зелёной энергетике»: «аккумуляторной батареей» Западной Европы стала Норвегия, богатая своим гидропотенциалом и имеющая в достаточном количестве гидроаккумулирующие станции (ГАЭС). Когда возникают излишки электроэнергии, насосы на ГАЭС качают воду из нижнего бьефа водохранилища в верхний. В моменты пика электропотребления воду вновь сбрасывают, и она приводит в движение генераторы. Эта страна уже соединена высоковольтными ЛЭП со Швецией, Данией и Нидерландами. Лондон тоже планирует проложить в Норвегию кабель по дну Северного моря. А Германия сможет за счёт такого же кабеля отправлять свои излишки «зелёного электричества» в Норвегию и получать оттуда по мере необходимости экологически чистую гидроэнергию с 2020 года. Соглашение о прокладке между немецким городом Вильстер, расположенным к северо-западу от Гамбурга, и норвежским Тонстадом подводной ЛЭП длиной 623 километра и мощностью в 1400 МВт было подписано в феврале 2015 года. Эта ЛЭП покроет 3% потребления электроэнергии в Германии.

Что касается использования энергии биомассы, то оно пока идёт вразрез с политикой предотвращения продовольственного кризиса на планете. Теперь на продукты аграрно-промышленного комплекса претендуют не только люди, но и машины. Например, для получения тонны биодизеля требуется около тонны растительного масла, выжатого из семян масличных культур. А для производства биоэтанола используют, в частности, сахарный тростник, пшеницу, рис, рожь, ячмень, кукурузу, сорго, картофель, топинамбур, сахарную свёклу.

Объём вредных выбросов в атмосферу у биоэтанола существенно меньше, чем у обычного бензина, но зато ниже его энергетическая ценность, а следовательно, требуются его бóльшие объёмы. Интересно, что размер нежелательных выбросов биоэтанола зависит от культуры, из которой он производится. Этанол из сахарного тростника сокращает выбросы парниковых газов примерно на 80% по сравнению с ископаемыми видами топлива. Самый же «неэкологичный» биоэтанол, снижающий выбросы лишь на 30%, производится из кукурузы. Именно сахарный тростник и кукуруза являются наиболее популярными культурами для производства биотоплива.

Основные производители биоэтанола сегодня – США, специализирующиеся на переработке в топливо кукурузы, и Бразилия, выращивающая для этого сахарный тростник. Эти страны производят 2/3 потребляемого в мире биотоплива. Из всех видов ВИЭ биомасса в этих странах – самый используемый возобновляемый ресурс.

Критики использования биотоплива отмечают, что рост его производства вызывает повышение цен на продовольствие, хотя должно бы быть наоборот: производство биоэтанола призвано было снизить зависимость от роста цен на нефть, влияющих, в свою очередь, на цену продуктов питания.

Противники биотоплива также обращают внимание, что под плантации сырья, используемого для его производства, либо вырубаются тропические леса (Бразилия, Малайзия, Индонезия), которые способны поглотить значительно больше СО2, чем сахарный тростник, кукуруза или другие злаковые, используемые для производства этанола, что так же, как и сжигание углеводородов, способствует глобальному потеплению; либо под плантации занимаются площади, которые раньше использовались для выращивания пищевых культур, что, естественно, не способствует борьбе с голодом. Производство биотоплива также противоречит стратегии экономии водных ресурсов, так как для производства литра биотоплива необходимо 2500 литров воды на выращивание технических культур.

Тем не менее, этот вид топлива перспективен, ведь его можно вырабатывать из огромного спектра имеющегося в наличии сырья: начиная от специально выращенных технических культур и заканчивая водорослями, отходами деревообработки, макулатурой, отработанным машинным маслом и продуктами жизнедеятельности крупного рогатого скота.

Несмотря на имеющиеся недостатки, все вышеперечисленные ВИЭ активно внедряются в ведущих странах мира, и затраты на их применение всё время снижаются. По оценкам Гринпис и некоторым сценариям Международного энергетического агентства (МЭА), себестоимость электроэнергии ВИЭ к 2030 году сравняется с себестоимостью электроэнергии из ископаемого топлива.

При достижении срока окупаемости вырабатываемая из ВИЭ энергия становится почти бесплатной из-за отсутствия затрат на топливо.

ВЫБОР РОССИИ
Российская энергетика продолжает оставаться инертной, делая ставку на нефть и газ. И это объясняется тем, что у нас нет достаточных стимулов для развития альтернативных источников. Во-первых, у нас всё своё и ни от кого мы в сфере энергетики не зависим. Во-вторых, чтобы внедрять новые технологии и менять всю структуру хозяйствования в этой сфере, нужны значительные финансовые вложения со стороны государства. Мировой опыт показывает, что для успешного развития возобновляемой энергетики необходимо как минимум стимулирование в виде необходимых подзаконных актов, субсидий на научные разработки, налоговых льгот, предоставления льготных кредитов на финансирование предприятий, использующих ВИЭ, и т.д.

В принципе, Россия включилась в общемировой процесс перехода на возобновляемые источники энергии, но очень осторожно. В 2013 году была запущена программа поддержки «зелёной энергетики» на оптовом рынке, которая гарантировала девелоперам возврат инвестиций в развитие альтернативных источников. По плану программы, к 2020 году в России должны появиться солнечные станции суммарной мощностью 1,5 ГВт, малые ГЭС мощностью 900 МВт и ветряки мощностью 3,6 ГВт. Это те мощности, которые правительство готово профинансировать. Правда, даже эти незначительные объёмы по факту финансирует не государство, а потребители через договоры о поставке мощности. Самые крупные потребители выражают своё недовольство этим обстоятельством.

ВИЭ у нас не пользуются популярностью даже среди инвесторов, рассчитывающих на господдержку. Из трёх предложенных программой альтернативных источников серьёзный интерес девелоперов был проявлен только к солнечной энергетике. Ветроэнергетике и малым ГЭС внимания уделяется пока значительно меньше.

Развитие альтернативной энергетики в России неактуально даже с позиций предотвращения изменения климата. В нашей стране на проблему глобального потепления в основном смотрят отстранённо и со скепсисом.

Во-первых, считается, что потепление для России – это скорее плюс, чем минус: будем меньше тратить топлива на обогрев, в тундре можно будет картошку выращивать, повысятся урожаи сельскохозяйственных культур, станет более доступен Северный морской путь и т.д.

Во-вторых, российские учёные склонны рассматривать проблему изменения климата в масштабах планетарной истории, а не истории человечества. Наша планета за время своего существования пережила несколько более значительных кардинальных изменений климата, и нынешнее потепление – это лишь небольшой и закономерный эпизод в истории Земли, который в меньшей степени вызван деятельностью человека и в большей степени – астрономическими процессами (движением Земли по эллиптической орбите, циклами солнечной активности, влиянием других планет, изменением угла наклона земной оси и прочим).

Кроме того, даже извержение одного крупного вулкана может оказать более серьёзное воздействие на климат, чем многолетняя деятельность человечества.

Более того, существует точка зрения, что сейчас наша планета должна вступить в очередной ледниковый период, а нынешняя деятельность человека, сопровождающаяся выбросами парниковых газов, отодвигает этот момент, чем спасает Землю от катаклизмов глобального похолодания.

В общем, Россия без энтузиазма воспринимает всеобщую эйфорию, вызванную наступающей эрой ВИЭ. Мы с большой Считается, что потепление для России – это скорее плюс, чем минус: будем меньше тратить топлива на обогрев, в тундре можно будет картошку выращивать, повысятся урожаи сельскохозяйственных культур, станет более доступен Северный морской путьнеохотой поддались общей моде на развитие альтернативных источников энергии и плетёмся в хвосте прогресса. Принятые законы – это некая дань общемировым тенденциям с внутренним ощущением их ненужности для нас. Наших запасов ископаемого топлива хватит ещё на несколько поколений, а развитие новых технологий и получение энергии на их основе пока слишком дорого. Мы можем пересидеть и переждать переходный период на пути к «зелёной энергетике», используя газ, который является самым экологически чистым видом топлива из всех ископаемых.

В этом случае наша главная опасность – остаться в прошлом веке, когда всё передовое человечество перейдёт в эру новых технологий. Хотя есть и другие проблемы, так как наши энергоресурсы перестанут интересовать всех, кроме нас самих. Уже сегодня цена на наши основные экспортные товары – нефть и газ – упала неожиданным для нас образом, и это падение, помимо усилившейся конкуренции нефтегазовых экспортёров, было вызвано ещё и уменьшением спроса в Европе из-за развития ВИЭ и, кстати, глобального потепления (!).

Единственный плюс такой ситуации лишь в том, что мы наконец газифицируем все наши территории. Стоит напомнить, что в сельской местности у нас не газифицировано 50% населённых пунктов. Да и ощутимая часть городского населения до сих пор не подключена к газу.

Однако наши энергетические гиганты потеряют большую часть доходов, а значит, и государство потеряет основной источник пополнения бюджета.

В конечном счёте, будем мы или не будем развивать альтернативную энергетику, для нашей страны не важно. Важно лишь то, что эти технологии развивают традиционные покупатели нашего топлива, а значит, России уже сейчас нужно искать новые источники дохода. Будущее – за новыми технологиями, а за нами лишь трудный выбор.

ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ, потоки энергии, постоянно существующие или периодически возникающие в окружающей среде. К основным возобновляемым источникам энергии относятся: солнечное излучение, гидроэнергия, энергия ветра, биомассы, морских и океанических течений, энергия приливов и отливов, тепловая энергия недр Земли (геотермальная энергия). Потенциальные запасы возобновляемых источников энергии намного превышают все перспективные потребности человечества в энергии, а также потенциал невозобновляемых источников энергии (органических и ядерное топливо). Использование возобновляемых источников энергии (нетрадиционная энергетика) позволит решить проблемы сокращения запасов невозобновляемых топливно-энергетических ресурсов, обеспечения энергоресурсами децентрализованных потребителей и регионов с дальним завозом топлива, снижения расходов на его доставку. Технический потенциал возобновляемых источников энергии России составляет примерно 4,6 миллиарда тонн условного топлива (т.у.т.) в год (в Российской Федерации принят топливный тонно-эквивалент по углю, равный 29,3·10 9 Дж; в Европе и США принят топливный тонно-эквивалент по нефти, равный 41,8·10 9 Дж), что превышает современный уровень энергопотребления России, составляющий около 1,2 миллиарда т.у.т. в год.

Солнечное излучение (самый мощный источник энергии на Земле) существенно меняется в зависимости от времени суток, состояния атмосферы, времени года. Годовой поток солнечной радиации на Земле находится в пределах 3000-8000 МДж/м 2 в год (800-2200 кВт·ч/м 2). Ежегодное количество солнечной энергии у поверхности Земли в 25 раз превышает энергию всех мировых разведанных запасов угля и в 3-5 тысяч раз больше ежегодно расходуемой человечеством энергии. В России экономический потенциал использования солнечной энергии эквивалентен 2300 миллионам т.у.т., освоено 12,5 миллионов т.у.т.

Солнечную энергию можно использовать для производства электроэнергии непосредственным преобразованием в электрическую энергию при помощи солнечных батарей (смотри также Гелиотехника, Гелиоэлектрическая станция).

Гидроэнергетические источники оценивают количеством энергии, которая может быть получена, если перегородить все крупные реки планеты, что соответствует 9802 миллиардам кВт·ч, в том числе 852 миллиарда кВт·ч (около 8,7% мировых запасов) составляет экономический потенциал гидроэнергетических ресурсов России. Наибольшими гидроэнергетическими запасами обладают Китай, Россия, США и Бразилия. В России основные гидроэнергетические ресурсы (около 80%) расположены в малообжитых районах Сибири и Дальнего Востока (освоено около 10%). Поэтому создание в этих районах крупных ГЭС представляется неоправданным как с экономической, так и с экологической точек зрения (приведёт к затоплению обширных пространств тайги). Производство современных гидроагрегатов мощностью 10-5860 кВт позволяет возобновить в России строительство малых ГЭС. Экономический потенциал использования малой гидроэнергетики эквивалентен 125 миллионам т.у.т., освоено 65 миллионов т.у.т. (на 2003 действуют около 50 микро-ГЭС мощностью от 1,5 до 50 кВт) (смотри Гидроэнергетика).

Использование энергии ветра в различных районах Земли неодинаково. В России экономический потенциал энергии ветра эквивалентен 2000 миллионов т.у.т., освоено 10 миллионов т.у.т. (смотри Ветроэлектрическая станция, Ветроэнергетика).

Биомасса, получаемая из продуктов сельского хозяйства, лесоводства, аквакультуры, промышленных и бытовых органических отходов, служит для производства энергии и биотоплива (энергетическая ферма). Основной целью переработки сырья могло бы быть исключительно производство энергии, но более выгодно использовать биомассу для получения и биотоплива (например, метилового спирта). В России экономический потенциал энергии биомассы эквивалентен 53 миллионам т.у.т., освоено 35 миллионов т.у.т. (2005). Имеются технические разработки по использованию биогаза в качестве автомобильного топлива (смотри Биогаз, Биомасса).

Океанические источники включают энергию течений на всей акватории Мирового океана, приливов, волн, смешивания пресные и солёные морские воды, разности (градиентов) температур, существующей между поверхностными и глубинными слоями воды в тропических районах океанов. Для технической реализации целесообразно освоение только наиболее крупных течений, приливов с большой амплитудой, участков океана со значительной разницей солёности между речным стоком и морской водой и с температурным перепадом в 20°С, при котором может быть эффективно осуществлён Карно цикл. На преобразовании энергии приливов основано действие приливных электростанций (ПЭС). Наиболее известны: ПЭС мощностью 240 МВт, расположенная в Бретани (Франция), и небольшая опытная станция мощностью 400 кВт в Кислой губе на побережье Баренцева море (Россия). К перспективным проектам развития приливной энергетики в России относятся Мезенская ПЭС на Белом море (19 200 МВт), Тугурская ПЭС на Охотском море (7980 МВт). В Мировом океане разность температур между тёплыми поверхностными водами и более холодными (придонными) достигает 20°С. Это обеспечивает непрерывно пополняемый запас тепловой энергии, которая может быть преобразована в другие виды (механическую, электрическую).

Геотермальные источники аккумулируют неисчерпаемое количество энергии в недрах земли. Ресурсы, пригодные для промышленного использования, разделяют на гидрогеотермальные и петрогеотермальные (смотри в статье Геотермальные ресурсы). Гидрогеотермальные источники (в том числе системы с горячей водой) распространены гораздо шире, чем системы, вырабатывающие перегретый пар (около 240°С) под давлением до 3,5 МПа, с небольшим содержанием других газов, отсутствием (или малым содержанием) воды (известные также как системы сухого пара). Пар, обычно высокого качества (содержит незначительное количество твёрдых частиц), можно направлять сразу же после извлечения из недр в обычную паровую турбину для производства электроэнергии. Первая в России Паужетская ГеоТЭС мощностью 5 МВт, доведённая впоследствии до мощности 11 МВт, создана в 1967 году на южной оконечности полуострова Камчатка. На Верхнемутновской ГеоТЭС мощностью 12 МВт и Мутновской ГеоТЭС мощностью 80 МВт (Камчатка) в качестве теплоносителя используется пар местного месторождения (давление 0,8 МПа). В 1989 году на Северном Кавказе создана опытная Ставропольская ГеоТЭС, где в качестве теплоносителя применяется термальная вода с температурой 165°С, добываемая с глубины 4,2 км. Функционирует океанская ГеоТЭС на острове Итуруп (Сахалинская область) суммарной мощностью 30 МВт. Находится в эксплуатации Курильская ГеоТЭС мощностью 0,5 МВт. Месторождения парогидротермальных источников имеются в России только на Камчатке и Курилах, поэтому геотермальная энергетика не может играть значительную роль в масштабах страны, однако для указанных районов, энергоснабжение которых целиком зависит от привозного топлива, геотермальная энергетика способна радикально решить проблему энергообеспечения (смотри также Геотермальная электростанция).

Экологический аспект. Существует мнение, что выработка электроэнергии за счёт возобновляемых источников представляет собой абсолютно экологически «чистый» вариант. Это не совсем верно, так как эти источники энергии обладают принципиально иным спектром воздействия на окружающую среду по сравнению с традиционными энергоустановками на органическом топливе. Использование возобновляемых источников энергии может привести к изменению теплового баланса, затемнению больших территорий солнечными концентраторами (солнечная энергия); шумовым воздействиям, локальным климатическим изменениям, опасности для мигрирующих птиц и насекомых (ветроэнергетика); выбросу твёрдых частиц, канцерогенных и токсичных веществ, диоксида углерода, биогаза (биоэнергетика); появлению биологических аномалий под воздействием гидродинамических и тепловых возмущений, периодическому затоплению прибрежных территорий, эрозии побережья, смене движения прибрежных песков (гидротермальная энергетика, энергия приливов, волн); изменению уровня грунтовых вод, оседанию почвы, заболачиванию (геотермальная энергетика) и др.

Лит.: Бойлс Д. Биоэнергия: технология, термодинамика, издержки. М., 1987; Васильев Л. Л., Гракович Л. П., Хрусталев Д. К. Тепловые трубы в системах с возобновляемыми источниками энергии. Минск, 1988; Андреев В. М., Грилихес В. А., Румянцев В. Д. Фотоэлектрическое преобразование концентрированного солнечного излучения. Л., 1989; Сичкарев В. И., Акуличев В. А. Волновые энергетические станции в океане. М., 1989; Лабунцов Д. А. Физические основы энергетики. М., 2000.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Виды нетрадиционных возобновляемых источников энергии, технологии их освоения. Возобновляемые источники энергии в России до 2010 г. Роль нетрадиционных и возобновляемых источников энергии в реформировании электроэнергетического комплекса Свердловской обл.

    реферат , добавлен 27.02.2010

    Характеристика возобновляемых источников энергии: основные аспекты использования; преимущества и недостатки в сравнении с традиционными; перспективы использования в России. Способы получения электричества и тепла из энергии солнца, ветра, земли, биомассы.

    курсовая работа , добавлен 30.07.2012

    Динамика развития возобновляемых источников энергии в мире и России. Ветроэнергетика как отрасль энергетики. Устройство ветрогенератора - установки для преобразования кинетической энергии ветрового потока. Перспективы развития ветроэнергетики в России.

    реферат , добавлен 04.06.2015

    Использование возобновляемых источников энергии, их потенциал, виды. Применение геотермальных ресурсов; создание солнечных батарей; биотопливо. Энергия Мирового океана: волны, приливы и отливы. Экономическая эффективность использования энергии ветра.

    реферат , добавлен 18.10.2013

    Существующие источники энергии. Мировые запасы энергоресурсов. Проблемы поиска и внедрения нескончаемых или возобновляемых источников энергии. Альтернативная энергетика. Энергия ветра, недостатки и преимущества. Принцип действия и виды ветрогенераторов.

    курсовая работа , добавлен 07.03.2016

    Актуальность поиска нетрадиционных способов и источников получения энергии, в особенности возобновляемых. Эксплуатация малых гидроэлектростанций, развитие промышленной ветроэнергетики. Характеристика солнечных, приливных и океанических электростанций.

    курсовая работа , добавлен 15.12.2011

    Использование возобновляемых источников энергии. Энергия солнца, ветра, биомассы и падающей воды. Генерирование электричество из геотермальных источников. Сущность геотермальной энергии. Геотермальные электрические станции с комбинированным циклом.