Бинарные отношения и их свойства. Бинарные отношения

Бинарным отношением на множестве А называется подмножество его квадрата RÍ A 2 . Бинарным отношением между множествами А и В называются подмножество принадлежащее декартовому произведению 2-х множеств: RÍ АхВ.

Если упорядоченная пара (а1, а2) принадлежит отношению R, то говорят что а1 R а2, то есть между элементом а1 и а2 уст-но отношение R.

Областью определения бинарного отношения называется множество элементов а, в котором в принадлежит бинарному отношению: þ R ={a|bÎ aRb}.

Областью значения бинарного отношения называют множество b, в котором а принадлежит бинарному значению:

P R ={b|aÎ aRb } .

Обратное отношение для отношения R называется отношение: R -1 ={(b,a)|(a,b) Î R }.

Отношение можно задать:

- с помощью любого способа задания множеств

- С помощью матрицы бинарного отношения . Матрица бинарного отношения это квадратная матрица R элементы которой определяются следующим образом rij=1, (ai,aj)Î R, 0 – в противном случае.

- С использованием графа . Каждому бинарному отношению можно подставить в соответствие граф G(X,U), содержащий множество вершин Х, и множество ребер U. При этом вершины aj ai соединяются дугой если упорядоченная пара aj ai Î R. Так как отношения являются множеством упорядоченных пар, то для отношения можно определить те же операции, что и для множеств (объединение, пересечение, разность, дополнение, симметрическая разность).

Свойство бинарных отношений:

1) Рефлексивность . Пусть на множестве А задано бинарное отношение R. Бинарное отношение называется рефлексивным, если для любого элемента А упорядоченная пара из этого элемента принадлежит R: для любого A(a,a) Î R. Т.е. бинарное отношение на множестве называется рефлексивным , если всякий элемент этого множества находится в отношении с самим собой.

Матрица рефлексивного отношения на диагонали содержит 1, а граф бинарного отношения имеет петли.

2)Антирефлексивность . Бинарные отношения являются антирефлексивными, если: для любого A(a,a) Ï R.

Матрица антирефлексивного отношения на диагонали содержит 0, а граф не имеет петель.

3)Симметричность. Бинарное отношение на множестве X называется симметричным , если для каждой пары элементов множества выполнение отношения влечёт выполнение отношения . Отношение симметрично, если .

Матрица симметричного бинарного отношения симметрична относительно главной диагонали. В графе все пары вершин соединены 2-мя противоположно направленными дугами.

4) Антисимметричночть . В математике бинарное отношение на множестве X называется антисимметричным , если для каждой пары элементов множества выполнение отношений и влечёт , или, что то же самое, выполнение отношений и возможно только для равных и .


Матрица антисимметричного бинарного отношения не симметрична относительно главной диагонали, в графе отсутствуют противоположно направленные дуги.

5) Транзитивность. Бинарное отношение называют транзитивным, если:

В графе задающего транзитивное бинарное отношение для каждой пары дуг таких, что конец первой совпадает с началом второй, существует дуга, соединяющая начало первой дуги с концом второй.

Специальные бинарные отношения:

1) Отношение Эквивалентности на множестве А это отношение, обладающее свойством рефлекисвности, симметричности и транзитивности. (Отношение равенства, отношение параллельности).

2) Отношения строгого порядка: это бинарное отношение на множестве А, обладающее свойствами антирефлексивности, антисимметричности и транзитивности.

3) Отношения нестрого порядка- бинарные отношения, обладающие свойствами рефлексивности. Антисимметричности и транзитивности.

Лекция 21. Свойства отношений

1. Свойство рефлексивености

2. Свойство симметричности

3. Свойство транзитивности

Мы установили, что бинарное отношение на множестве X пред­ставляет собой множество упорядоченных пар элементов, принад­лежащих декартову произведению X х Х. Это математическая сущ­ность всякого отношения. Но, как и любые другие понятия, отноше­ния обладают свойствами. Их удалось выделить, изучая различные конкретные отношения. Свойств достаточно много, в нашем курсе мы будем изучать только некоторые.

Рассмотрим на множестве отрезков, представ­ленных на рис. 98, отношения перпендикулярно­сти, равенства и «длиннее». Построим графы этих отношений (рис. 99) и будем их сравнивать. Ви­дим, что граф отношения равенства отличается от двух других наличием петель в каждой его вершине. Эти петли - результат того, что отно­шение равенства отрезков обладает свойством: любой отрезок равен самому себе. Говорят, что отношение равенства обладает свойством рефлек­сивности или просто, что оно рефлексивно.

Определение. Отношение R на множестве X называется рефлексив­ным, если о каждом элементе множества X можно сказать, что он находится в отношении R с самим собой.

R рефлексивно на Х ↔ х R х для любого х € X.

опр.

Если отношение R рефлексивно на множестве X, то в каждой вер­шине графа данного отношения имеется петля. Справедливо и обрат­ное утверждение: граф, каждая вершина которого имеет петлю, задает отношения, обладающие свойством рефлексивности.

Примеры рефлексивных отношений:

Отношение «кратно» на множестве натуральных чисел (каждое натуральное число кратно самому себе);

Отношение подобия треугольников (каждый треугольник подо­бен самому себе).

Существуют отношения, которые свойством рефлексивности не обладают. Таким, например, является отношение перпендикулярности на множестве отрезков: нет ни одного отрезка, о котором можно ска­зать, что он перпендикулярен самому себе. Поэтому на графе отноше­ния перпендикулярности (рис. 99) нет ни одной петли. Не обладает свойством рефлексивности и отношение «длиннее» для отрезков.

Обратим теперь внимание на графы отношений перпендикулярно­сти и равенства отрезков. Они «похожи» тем, что если есть одна стрелка, соединяющая пару элементов, то обязательно есть и другая, соединяющая те же элементы, но идущая в противоположном направ­лении. Эта особенность графа отражает те свойства, которыми обла­дают отношения параллельности и равенства отрезков:

Если один отрезок перпендикулярен другому отрезку, то этот «другой» перпендикулярен первому;



Если один отрезок равен другому отрезку, то этот «другой» равен первому.

Про отношения перпендикулярности и равенства отрезков гово­рят, что они обладают свойством симметричности или просто сим­метричны.

Определение. Отношение R на множестве X называется симмет­ричным, если выполняется условие: из того, что элемент х находит­ся в отношении R с элементом у, следует, что и элементу находит­ся в отношении R с элементом х.

Используя символы, это отношение можно записать в таком виде:

R симметрично на Х ↔ (х R y →yRx).

опр.

Граф симметричного отношения обладает особенностью: вместе с каждой стрелкой, идущей от х к у, граф содержит и стрелку, идущую от у к x . Справедливо и обратноеутверждение. Граф, содержащий вместе с каждой стрелкой, идущей от x к у, и стрелку, идущую от у к x , является графом симметричного отношения.

В дополнение к рассмотренным двум примерам симметричных от­ношений присоединим еще такие:

Отношениепараллельности на множестве прямых (если прямая x параллельна прямой у, то и прямая у параллельна прямой х)

Отношение подобия треугольников (если треугольник F подобен треугольнику Р, то треугольник Р подобен треугольнику F).

Существуют отношения, которые свойством симметричности не обладают. Таким, например, является отношение «длиннее» на мно­жестве отрезков. Действительно, если отрезок x длиннее отрезка у, то отрезок у не может быть длиннее отрезка х. Про отношения «длиннее» говорят, что оно обладает свойством антисимметрично­сти или просто антисимметрично.

Определение. Отношение R на множестве X называется анти­симметричным, если для различных элементов х и у из множества X выполнено условие: из того, что х находится в отношении R с элементом у, следует, что элемент у в отношении R с элементом х не находится.

R симметрично на Х ↔ (х R y ^ x≠y →yRx).

опр.

Граф антисимметричного отношения обладает особенностью: если две вершины графа соединены стрелкой, то эта стрелка только одна. Справедливо и обратное утверждение: граф, вершины которого со­единены только одной стрелкой, есть граф антисимметричного отношения.

Кроме отношения «длиннее» на множестве отрезков свойством ан­тисимметричности, например, обладают:

Отношение «больше» для чисел (если х больше у, то у не может
быть больше х);

Отношение «больше на 2» для чисел (если х боль­ше у на 2, то у не может быть больше на 2 числа х),

Существуют отношения, не обладающие ни свой­ством симметричности, ни свойством антисиммет­ричности. Рассмотрим, например, отношение «быть сестрой» на множестве детей одной семьи. Пусть в семье трое детей: Катя, Маша и Толя. Тогда граф отношения «быть сестрой» будет таким, как на рисунке 100. Он показывает, что данное отношение не обладает ни свой­ством симметричности, ни свойством антисимметричности.

Обратим внимание еще раз на одну особенность графа отноше­ния «длиннее» (рис. 99). На нем можно заметить: если стрелки про­ведены от е к а и от а к с, то есть стрелка от е к с ; если стрелки приведены от е к b и от b к с, то есть стрелка и от е к с и т.д. Эта особенность графа отражает важное свойство отношения «длиннее»: если первый отрезок длиннее второго, а второй - длиннее третьего, то первый - длиннее третьего. Говорят, что это отношение обладает свойством транзитивности или просто транзитивно.

Определение. Отношение R на множестве X называется транзи­тивным, если выполняется условие; из того, что элемент х нахо­дится в отношении R с элементом у и элемент у находится в от­ношении R с элементом z, следует, что элемент х находится в от­ношении К с элементом z .

Используя символы, это определение можно записать в таком виде:

R транзитивно на X ↔ (х R y ^ yRz → xRz).

опр.

Граф транзитивного отношения с каждой парой стрелок, идущих от x к у и у к z , содержит стрелку, идущую от х к z. Справедливо и обратное утверждение.

Кроме отношения «длиннее» на множестве отрезков свойством транзитивности обладает отношение равенства: если отрезок х равен отрезку у и отрезок у равен отрезку z, то отрезок х равен отрезку z, Это свойство отражено и на графе отношения равенства (рис. 99)

Существуют отношения, которые свойством транзитивности не об­ладают. Таким отношением является, например, отношение перпенди­кулярности: если отрезок а перпендикулярен отрезку d , а отрезок d перпендикулярен отрезку b, то отрезки а и b не перпендикулярны!

Рассмотрим еще одно свойство отношений, которое называют свой­ством связанности, а отношение, обладающее им, называют связанным.

Определение. Отношение R на множестве X называется связан­ным, если для любых элементов х и у из множества X выполняется условие: из того, что х и у различны, следует, что либо х находит­ся в отношении R с элементом у, либо элемент у находится в от­ношении R с элементом х.

Используя символы, это определение можно записать в таком виде:

R связано на множестве X ↔ (х ≠ у => хRу v уRх).

опр.

Например, свойством связанности обладают отношения «больше» длянатуральных чисел: для любых различных чисел х и у можно ут­верждать, что либо х > у, либо у > х.

На графе связанного отношения любые две вершины соединены стрелкой. Справедливо и обратное утверждение.

Существуют отношения, которые свойством связанности не обла­дают. Таким отношением, например, является отношение делимости на множестве натуральных чисел: можно назвать такие числа х и у, что ни число х не является делителем числа у, ни число у не является делителем числа х.

Выделенные свойства позволяют анализировать различные отно­шения с общих позиций - наличия (или отсутствия) у них тех или иных свойств.

Так, если суммировать все сказанное об отношении равенства, за­данном на множестве отрезков (рис. 99), то получается, что оно реф­лексивно, симметрично и транзитивно. Отношение «длиннее» на том же множестве отрезков антисимметрично и транзитивно, а отношение перпендикулярности - симметрично, но оно не обладает свойствами рефлексивности и транзитивности. Все эти отношения на заданном множестве отрезков связанными не являются.

Задача 1. Сформулировать свойства отноше­ния R, заданного при помощи графа (рис. 101).

Решение. Отношение R -антисимметрично, так как вершины графа соединяются только одной стрелкой.

Отношение R - транзитивно, так как с парой стрелок, идущих от b к а и от а к с, на графе есть стрелка, идущая от b к с.

Отношение R - связанно, так как любые две вер­шины соединены стрелкой.

Отношение R свойством рефлексивности не обла­дает, так как на графе есть вершины, в которых петли нет.

Задача 2. Сформулировать свойства отношения «больше в 2 раза», заданного на множестве натуральных чисел.

Решение. «Больше в 2 раза» - это краткая форма отношения «число х больше числа у в 2 раза». Это отношение антисимметрично, так как выполняется условие: из того, что число х больше числа у в 2 раза, следует, что число y не больше числа x 2 раза.

Данное отношение не обладает свойством рефлексивности, пото­му что ни про одно число нельзя сказать, что оно больше самого себя в 2 раза.

Заданное отношение не транзитивно, так как из того, что число x больше числа у на 2, а число у больше числа z на 2, следует, что число х не может быть больше числа z на 2.

Это отношение на множестве натуральных чисел свойством связан­ности не обладает, так как существуют пары таких чисел х и у, что ни число х не больше числа у в два раза, ни число у не больше х в 2 раза. Например, это числа 7 и 3, 5 и 8 и др.

Само понятие «отношение», конечно, вам знакомо. Мы часто его употребляем в речи. Например, мы можем сказать, что я в хороших отношениях со всеми студентами моей группы.

В жизни мы постоянно находимся в различных отношениях и вступаем в различные отношения. С членами своей семьи мы находимся в отношении родства, со школьными товарищами - в отношении дружбы, с руководителями учреждения, где мы учимся или работаем, - в отношении подчинения и т.д. В этом смысле отношение - это определенный характер связи .

В параграфе 2.2 мы говорили об отношениях, которые существуют между математическими объектами. Так, элемент по отношению к множеству находится в отношении принадлежности, два множества могут находиться в отношении включения или равенства.

Сейчас мы рассмотрим отношения, которые могут существовать между элементами множеств. Итак, мы сказали, что отношение, установленное между элементами множеств в рассмотренном примере, называется бинарными.

По существу в примере мы составили сначала декартово произведение заданных множеств, т.е. множество всех пар элементов этих множеств, так, что первый элемент пары принадлежит первому множеству, а второй - второму. Затем мы из множества этих пар выбрали подмножество тех пар, которые показывают, на каком же факультете учится каждый из студентов.

Определение 2.8. Бинарным отношением между множествами Ли В называется любое подмножество декартова произведения Ах В.

Бинарные отношения обычно обозначают буквами греческого алфавита: р («ро»), а («сигма»), |/ («пси») и др.

Если р - некоторое бинарное отношение между множествами А и В, то согласно определению бинарного отношения мы можем записать, что р с с Л х В.

Если пара (а, b ) принадлежит бинарному отношению р, т.е. (а, b ) е р, то говорят, что элемент а находится в отношении р с элементом b , и пишут арб. Так, в приведенном выше примере рассмотрено отношение «учиться на факультете». Тогда можно сказать, что Петр находится в данном отношении с факультетом математики.

Для некоторых отношений в математике существуют определенные знаки. Например,

В связи с тем что бинарное отношение - это множество пар, то, как любое множество, его можно задать либо перечислением этих пар, либо указанием характеристического свойства для выделения из декартова произведения пар, принадлежащих данному отношению.

Пример 2.6

Пусть заданы два числовых множества: А = {1, 3,5} и В = {2, 8, 10}. Зададим бинарное отношение о между этими множествами перечислением: а = {(1, 2), (5, 10)}. Это же отношение мы может задать и характеристическим свойством: бинарное отношение образуют пары чисел, такие что число из первого множества в два раза меньше числа из второго множества.

Пример 2.7

Рассмотрим множество студентов вашей академической группы. Установим в этом множестве отношение «быть другом». Для любой пары студентов академической группы можно сказать, находятся они в данном отношении или нет. Может даже случиться так, что это бинарное отношение будет образовывать пустое множество. В каком случае это будет?

В последнем примере нужно обратить внимание на то, что мы устанавливали отношение не между элементами двух множеств, а между элементами одного множества. Это также возможно и не противоречит определению бинарного отношения. Только в этом случае вместо декартова произведения двух множеств нужно рассмотреть декартов квадрат множества.

Бинарное отношение, заданное на множестве, может иметь разные свойства. Рассмотрим их.

1. Свойство рефлексивности.

Определение 2.9. рефлексивным , если для любого а е Л пара (а> а) е р.

Отношение «

2. Свойство симметричности.

Определение 2.10. Говорят, что бинарное отношение р, заданное на множестве Л, является симметричным , если для любых элементов а и b из Л из того, что пара (а , b ) находится в отношении р, следует, что пара (b , а) находится в отношении р.

Например, отношение равенства, заданное на множестве действительных чисел, симметрично, так как если число k равно числу п } то и число п равно числу k. Симметричным является и отношение «быть другом».

С другой стороны, отношение упорядоченности по величине (

3. Свойство антисимметричности.

Определение 2.11. Говорят, что бинарное отношение р, заданное на множестве Л, является антисимметричным у если для любых элементов а и b из Л из того, что пары (я, /;) и (/;, а) находятся в отношении р, следует, что а = Ь.

Например, отношение упорядоченности по величине на множестве действительных чисел антисимметрично. Ведь если известно, что для чисел х и у выполнено х и у то это означает, что х - у. А вот отношение параллельности прямых не является антисимметричным, так как если прямая / параллельна прямой t и прямая t параллельна прямой /, то это не означает, что прямые / и t совпадают. Они могут быть различны.

4. Свойство транзитивности.

Определение 2.12. Говорят, что бинарное отношение р, заданное на множестве Л, является транзитивным у если для любых элементов а , b и с из Л из того, что пары (я, b ) и (/?, с) находятся в отношении р, следует, что пара (а, с) также находится в отношении р.

Свойством транзитивности обладают отношения упорядоченности по величине, параллельности, отношение «быть родственником».

Отношение перпендикулярности прямых не является транзитивным (покажите это с помощью рисунка). Также по существу не является транзитивным и отношение «быть другом» (хотя и есть присказка, в которой выражено желание о транзитивности этого отношения: «Друг моего друга - мой друг»).

Мы рассмотрели только основные свойства бинарных отношений, которые определяют два широко используемых типа отношений.

Отношением эквивалентности (или эквивалентностью) называется бинарное отношение, которое обладает свойствами рефлексивности, симметричности и транзитивности.

Отношением упорядоченности (или упорядоченностью) называется бинарное отношение, которое обладает свойствами рефлексивности, антисимметричности и транзитивности.

Например, отношение «быть одноклассником» является эквивалентностью, так как оно обладает свойством рефлексивности, симметричности и транзитивности. Отношение «быть не выше ростом» на множестве людей является отношением упорядоченности.

Отношения эквивалентности и упорядоченности имеют очень важное значение в различных областях математики, а эквивалентность используется при выполнении классификаций различных объектов. Для того чтобы это понять, обратимся сначала к такому математическому понятию, как разбиение множества.

Определение 2.13. Разбиением множества/! называется представление этого множества в виде объединения непересекающихся подмножеств, которые называются классами разбиения.

Чтобы проверить, что мы имеем дело с разбиением множества, нужно проверить два условия:

  • объединение полученных при разбиении подмножеств является исходным множеством;
  • пересечение любых двух различных подмножеств является пустым множеством.

При выполнении классификации классами разбиения являются так называемые классы эквивалентности. Как же строятся эти классы?

Пусть на множестве А введено некоторое отношение эквивалентности р. Возьмем любой элемент а из А и все элементы из А, которые находятся с а в отношении р. Все эти элементы и будут образовывать класс эквивалентности элемента а. Понятно, что и сам элемент а попадет в этот класс. Действительно, если р - отношение эквивалентности, то оно обладает свойством рефлексивности, т.е. (а } а) е р, а это и означает, что сам элемент а входит в класс эквивалентности, который он образует.

Можно доказать, что классы эквивалентности различных элементов множества либо совпадают, либо не пересекаются. В связи с этим можно предположить, что эти классы могут рассматриваться в качестве классов разбиения.

Действительно, существует теорема, которая говорит о том, что если на множестве задано отношение эквивалентности, то множество всех классов эквивалентности, содержащих элементы этого множества, является разбиением этого множества.

С другой стороны, можно доказать, что если есть некоторое разбиение множества и на этом множестве задано бинарное отношение так, что пара элементов множества находится в этом отношении только при условии, что они оба принадлежат одному классу разбиения, то это бинарное отношение будет эквивалентностью.

Можно попробовать доказать каждое из этих утверждений самостоятельно или разобрать доказательство, которое приведено в работе .

При использовании классов эквивалентности мы разбиваем множество на подмножества, в каждое из которых входят своего рода «одинаковые» элементы. Например, множество всех положительных дробей можно разбить на классы эквивалентности таким образом: 1) взять каждую несокра-

тимую дробь (например, -); 2) в каждый класс эквивалентности соответ-

2 4 6 8 ч т

ствующеи дроби отнести все равные ей дроби - = - = - = 1аким

образом, мы разобьем все положительные дроби на соответствующие классы эквивалентности. Каждый такой класс является положительным рациональным числом.

  • В Большой советской энциклопедии говорится, что «отношение - эмоционально-волевая установка личности на что-либо, т.е. выражение ее позиции; мысленное сопоставление различных объектов или сторон данного объекта». В толковом словаре Д. Н. Ушакова«отношение - взаимное общение, связь между людьми, обществами, странами и т.п., образующаяся из общения на какой-нибудь почве».

Основы дискретной математики.

Понятие множества. Отношение между множествами.

Множество – совокупность объектов, обладающих определенным свойством, объединенных в единое целое.

Объекты, составляющие множество называются элементами множества. Для того чтобы некоторую совокупность объектов можно было называть множеством должны выполняться следующие условия:

· Должно существовать правило, по которому моно определить принадлежит ли элемент к данной совокупности.

· Должно существовать правило, по которому элементы можно отличить друг от друга.

Множества обозначаются заглавными буквами, а его элементы маленькими. Способы задания множеств:

· Перечисление элементов множества. - для конечных множеств.

· Указание характеристического свойства .

Пустым множеством – называется множество, не содержащее ни одного элемента (Ø).

Два множества называются равными, если они состоят из одних и тех же элементов. , A=B

Множество B называется подмножеством множества А ( , тогда и только тогда когда все элементы множества B принадлежат множеству A .

Например: , B =>

Свойство:

Примечание: обычно рассматривают подмножество одного и того е множества, которое называется универсальным (u). Универсальное множество содержит все элементы.

Операции над множествами.

A
B
1. Объединением 2-х множеств А и В называется такое множество, которому принадлежат элементы множества А или множества В (элементы хотя бы одного из множеств).

2.Пересечением 2-х множеств называется новое множество, состоящее из элементов, одновременно принадлежат и первому и второму множеству.

Н-р: , ,

Свойство: операции объединения и пересечения.

· Коммутативность.

· Ассоциативность. ;

· Дистрибутивный. ;

U
4.Дополнение . Если А – подмножество универсального множества U , то дополнением множества А до множества U (обозначается ) называется множество состоящее из тех элементов множества U , которые не принадлежат множеству А .

Бинарные отношения и их свойства.

Пусть А и В это множества производной природы, рассмотрим упорядоченную пару элементов (а, в) а ϵ А, в ϵ В можно рассматривать упорядоченные «энки».

(а 1 , а 2 , а 3 ,…а n) , где а 1 ϵ А 1 ; а 2 ϵ А 2 ; …; а n ϵ А n ;

Декартовым (прямым) произведением множеств А 1 , А 2 , …, А n , называется мн-во, которое состоит из упорядоченных n k вида .

Н-р: М = {1,2,3}

М× М= М 2 = {(1,1);(1,2);(1,3); (2,1);(2,2);(2,3); (3,1);(3,2);(3,3)}.

Подмножества декартова произведения называется отношением степени n или энарным отношением. Если n =2, то рассматривают бинарные отношения. При чем говорят, что а 1 , а 2 находятся в бинарном отношении R , когда а 1 R а 2.

Бинарным отношением на множестве M называется подмножество прямого произведения множества n самого на себя.

М× М= М 2 = {(a, b )| a, b ϵ M } в предыдущем примере отношение меньше на множестве М порождает следующее множество: {(1,2);(1,3); (2,3)}

Бинарные отношения обладают различными свойствами в том числе:

· Рефлексивность: .

· Антирефлексивность (иррефлексивность): .

· Симметричность: .

· Антисимметричность: .

· Транзитивность: .

· Асимметричность: .

Виды отношений.

· Отношение эквивалентности;

· Отношение порядка.

v Рефлексивное транзитивное отношение называется отношением квазипорядка.

v Рефлексивное симметричное транзитивное отношение называется отношением эквивалентности.

v Рефлексивное антисимметричное транзитивное отношение называется отношением (частичного) порядка.

v Антирефлексивное антисимметричное транзитивное отношение называется отношением строгого порядка.

Отношение, заданное на множестве, может обладать рядом свойств, а именно:

2. Рефлексивность

Определение. Отношение R намножестве Х называется рефлексивным, если каждый элемент х множества Х находится в отношении R с самим собой.

Используя символы, это отношение можно записать в таком виде:

R рефлексивно на Х Û("х Î Х ) х R х

Пример. Отношение равенства на множестве отрезков рефлексивно, т.к. каждый отрезок равен себе самому.

Граф рефлексивного отношения во всех вершинах имеет петли.

2. Антирефлексивность

Определение. Отношение R намножестве Х называется антирефлексивным, если ни один элемент х множества Х не находится в отношении R с самим собой.

R антирефлексивно на Х Û("х Î Х )

Пример. Отношение «прямая х перпендикулярна прямой у » на множестве прямых плоскости антирефлексивно, т.к. ни одна прямая плоскости не перпендикулярна самой себе.

Граф антирефлексивного отношения не содержит ни одной петли.

Заметим, что существуют отношения, не являющиеся ни рефлексивными, ни антирефлексивными. Например, рассмотрим отношение «точка х симметрична точке у » на множестве точек плоскости.

Точка х симметрична точке х – истинно; точка у симметрична точке у – ложно, следовательно, мы не можем утверждать, что все точки плоскости симметричны сами себе, также мы не можем и утверждать, что ни одна точка плоскости не симметрична сама себе.

3. Симметричность

Определение . Отношение R намножестве Х называется симметричным, если из того, что элемент х находится в отношении R с элементом у , следует, что и элемент у находится в отношении R с элементом х .

R симметричнона Х Û("х , у Î Х ) х R у Þ у R х

Пример. Отношение «прямая х пересекает прямую у на множестве прямых плоскости» симметрично, т.к. если прямая х пересекает прямую у , то и прямая у обязательно будет пересекать прямую х .

Граф симметричного отношения вместе с каждой стрелкой из точки х в точку у должен содержать стрелку, соединяющую те же точки, но в обратном направлении.

4. Асимметричность

Определение . Отношение R намножестве Х называется асимметричным, если ни для каких элементов х , у из множества Х не может случиться, что элемент х находится в отношении R с элементом у и элемент у находится в отношении R с элементом х .

R асимметричнона Х Û("х , у Î Х ) х R у Þ

Пример. Отношение «х < у » асимметрично, т.к. ни для какой пары элементов х , у нельзя сказать, что одновременно х < у и у < х .

Граф асимметричного отношения не имеет петель и если две вершины графа соединены стрелкой, то эта стрелка только одна.

5. Антисимметричность

Определение . Отношение R намножестве Х называется антисимметричным, если из того что х находится в отношении с у , а у находится в отношении с х следует, что х = у.

R антисимметричнона Х Û("х , у Î Х ) х R у Ù у R х Þ х = у

Пример. Отношение «х £ у » антисимметрично, т.к. условия х £ у и у £ х одновременно выполняются только тогда, когда х = у.

Граф антисимметричного отношения имеет петли и если две вершины графа соединены стрелкой, то эта стрелка только одна.

6. Транзитивность

Определение . Отношение R намножестве Х называется транзитивным, если для любых элементов х , у , z из множества Х из того, что х находится в отношении с у , а у находится в отношении с z следует, что х находится в отношении с z.

R транзитивнона Х Û("х , у , z Î Х ) х R у Ù у R z Þ х R z

Пример. Отношение «х кратно у » транзитивно, т.к. если первое число кратно второму, а второе кратно третьему, то первое число будет кратно третьему.

Граф транзитивного отношения с каждой парой стрелок от х к у и от у к z содержит стрелку, идущую от х к z.

7. Связность

Определение . Отношение R намножестве Х называется связным, если для любых элементов х , у из множества Х х находится в отношении с у или у находится в отношении с х или х = у .

R связнона Х Û("х , у , z Î Х ) х R у Ú у R z Ú х = у

Другими словами: отношение R намножестве Х называется связным, если для любых различных элементов х , у из множества Х х находится в отношении с у или у находится в отношении с х или х = у .

Пример. Отношение «х < у » связно, т.к. какие бы мы действительные числа не взяли, обязательно одно из них будет больше другого или они равны.

На графе связного отношения все вершины соединены между собой стрелками.

Пример. Проверить, какими свойствами обладает

отношение «х – делитель у », заданное на множестве

Х = {2; 3; 4; 6; 8}.

1) данное отношение рефлексивно, т.к. каждое число из данного множества является делителем самого себя;

2) свойством антирефлексивности данное отношение не обладает;

3) свойство симметричности не выполняется, т.к. например, 2 является делителем числа 4, но 4 делителем числа 2 не является;

4) данное отношение антисимметрично: два числа могут быть одновременно делителями друг друга только в том случае, если эти числа равны;

5) отношение транзитивно, т.к. если одно число является делителем второго, а второе – делителем третьего, то первое число обязательно будет делителем третьего;

6) отношение свойством связности не обладает, т.к. например, числа 2 и 3 на графе стрелкой не соединены, т.к. два различных числа 2 и 3 делителями друг друга не являются.

Таким образом, данное отношение обладает свойствами рефлексивности, асимметричности и транзитивности.

§ 3. Отношение эквивалентности.
Связь отношения эквивалентности с разбиением множества на классы

Определение. Отношение R на множестве Х называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.

Пример. Рассмотрим отношение «х однокурсник у » на множестве студентов педфака. Оно обладает свойствами:

1) рефлексивности, т.к. каждый студент является однокурсником самому себе;

2) симметричности, т.к. если студент х у , то и студент у является однокурсником студента х ;

3) транзитивности, т.к. если студент х - однокурсник у , а студент у – однокурсник z , то студент х будет однокурсником студента z .

Таким образом, данное отношение обладает свойствами рефлексивности, симметричности и транзитивности, а значит, является отношением эквивалентности. При этом множество студентов педфака можно разбить на подмножества, состоящие из студентов, обучающихся на одном курсе. Получаем 5 подмножеств.

Отношением эквивалентности являются также, например, отношение параллельности прямых, отношение равенства фигур. Каждое такое отношение связано с разбиением множества на классы.

Теорема. Если на множестве Х задано отношение эквивалентности, то оно разбивает это множество на попарно непересекающиеся подмножества (классы эквивалентности).

Верно и обратное утверждение: если какое-либо отношение, заданное на множестве Х , порождает разбиение этого множества на классы, то оно является отношением эквивалентности.

Пример. На множестве Х = {1; 2; 3; 4; 5; 6; 7; 8} задано отношение «иметь один и тот же остаток при делении на 3». Является ли оно отношением эквивалентности?

Построим граф данного отношения:


Данное отношение обладает свойствами рефлексивности, симметричности и транзитивности, следовательно, является отношение эквивалентности и разбивает множество Х на классыэквивалентности. В каждом классе эквивалентности будут числа, которые при делении на 3 дают один и тот же остаток: Х 1 = {3; 6}, Х 2 = {1; 4; 7}, Х 3 = {2; 5; 8}.

Считают, что класс эквивалентности определяется любым своим представителем, т.е. произвольным элементом этого класса. Так, класс равных дробей можно задать, указав любую дробь, принадлежащую этому классу.

В начальном курсе математики также встречаются отношения эквивалентности, например, «выражения х и у имеют одинаковые числовые значения», «фигура х равна фигуре у ».