Свойства пищевого сырья и продуктов питания. Свойства пищевых продуктов

Химический состав и вкусовые свойства пищевых продуктов определяются содержанием в них пищевых веществ и других соединений (органических кислот, дубильных веществ, эфирных масел, спиртов и т. д.). По химическому составу, питательной ценности и биологическому действию пищевые продукты являются веществами смешанными. Некоторые из них имеют преимущественное значение как источники пластических («ростовых») веществ (пищевые продукты животного происхождения - мясо, рыба, молоко и т. д.); другие служат главным образом энергетическими источниками (продукты переработки зерна, жир); третьи обеспечивают поступление необходимых биологически активных компонентов (овощи, плоды, растительные масла, дрожжи, печень, молочнокислые продукты).

Химический состав и пищевая ценность некоторых наиболее распространенных пищевых продуктов см. в таблице.
Усвояемость пищевых продуктов зависит от различных факторов, в том числе от соотношения содержащихся в рационе животных и растительных продуктов, способов кулинарной обработки пищи, от возраста человека, состояния желудочно-кишечного тракта. Растительные продукты усваиваются хуже, чем животные, в первую очередь это относится к белкам. Усвояемость белка пищевых продуктов животного происхождения достигает 96% ; из растительных пищевых продуктов усваивается 70-85% белка в зависимости от вида пищевых продуктов и характера его обработки. Усвояемость растительных продуктов несколько увеличивается в смешанной пище. При обычном смешанном питании усвоение белка составляет 84,5%, жира - 94%, - 94-96%.

При определении пищевой ценности пищевых продуктов необходимо учитывать содержание отходов - несъедобных частей пищевых продуктов (кожура картофеля, некоторых овощей, внутренности и птицы, кости и мяса и т. д.). У некоторых пищевых продуктов отходы составляют до 50% отпускаемого веса продукта.

Порча пищевых продуктов обусловлена разложением содержащихся в них органических веществ (белков, жиров, углеводов). Накопление продуктов распада вызывает специфические неприятные изменения органолептических свойств пищевых продуктов. В обычных условиях хранения пищевые продукты делятся на и нескоропортящиеся. К первым относятся мясо, рыба, молоко, яичный меланж, многие ягоды, пищевая зелень и др., которые под влиянием микроорганизмов быстро подвергаются порче. Нескоропортящиеся пищевые продукты (зерно, мука, крупа, макаронные изделия и др.) содержат, как правило, мало воды. С целью удлинения сроков сохранности пищевых продуктов их подвергают специальной обработке - консервированию (см. Консервы).

При осуществлении текущего за условиями хранения пищевых продуктов необходимо следить за выполнением следующих требований.
1. Соблюдение температурного режима при сохранении скоропортящихся продуктов.

2. Соблюдение установленных сроков хранения пищевых продуктов.

3. Недопустимость совместного хранения готовых изделий с сырыми продуктами и запрещение хранения испорченных пищевых продуктов.

4. Регулярное проведение дезинфекции, очистки и уборки охлаждаемых камер, кладовых, погребов и других мест хранения пищевых продуктов.

В СССР качество пищевых продуктов контролируется государственными органами. Основными законодательными документами являются Государственные общесоюзные стандарты (ГОСТы) и технические условия (МРТУ, РТУ ТУ, В ТУ).

Каждый стандарт охватывает все наиболее важные вопросы, связанные с качеством продукта, приводит физико-химические и бактериологические показатели, правила органолептической оценки, упаковки, системы приема, методы исследования и т. д. При проведении санитарной экспертизы пищевые продукты могут быть признаны условно годными, т. е. продуктами, которые после переработки могут быть использованы для питания.

Решать вопрос о пригодности для целей питания нестандартного продукта может только санитарная служба. Контроль качества пищевых продуктов осуществляют Государственные инспекции по качеству при министерствах и ведомствах, надзор за соблюдением санитарно-гигиенических показателей - санитарно-эпидемиологическая служба министерств здравоохранения.

Пищевые продукты подразделяются на животные, растительные и синтетические.

По химическому составу, пищевым свойствам и биологическому действию пищевые продукты являются веществами смешанными. Некоторые из них имеют преимущественное значение как источники пластических и ростовых веществ, другие служат главным образом источником энергетических материалов, третьи обеспечивают поступление необходимых, жизненно важных, биологически активных компонентов (см. таблицу). Важнейшей составной частью пищевых продуктов животного происхождения является белок (см. Белки), содержащий все незаменимые аминокислоты. Усвояемость белка животного происхождения достигает 96%. Усвояемость белка из растительных пищевых продуктов находится в пределах 70-85% в зависимости от пищевого продукта и характера его обработки. Использование в определенных соотношениях животных и растительных пищевых продуктов позволяет обеспечить оптимальное белковое питание путем взаимного дополнения их аминокислотного состава.

К источникам пластических веществ, кроме белка, могут быть отнесены пищевые продукты, богатые усвояемым кальцием (см.) и фосфором (см.). В этом отношении непревзойденными являются молоко (см.) и сыр (см.), кальций которых находится в наиболее благоприятном соотношении с фосфором.

Энергетическими источниками в питании человека являются пищевые продукты, богатые углеводами (см.) и жирами (см.). Главные источники углеводов - это продукты переработки зерна, в основном хлеб (см. Хлеб, хлебопродукты), крупы (см.). Усвояемость углеводов достигает 94-96%. За счет их обеспечивается более половины энергетической ценности суточного рациона. Важным источником энергии являются также сахар и сахаристые пищевые продукты (см. Мед, Кондитерские изделия, Сахароза, сахар) и жиры.

Третью группу пищевых продуктов составляют источники биологически активных компонентов нищи: витаминов (см.), ферментов (см.), фосфатидов микроэлементов (см.). К ним относятся многие овощи (см.), плоды (см.), дрожжи (см.), растительные масла, а из животных продуктов - печень, рыбьи жиры, особенно печеночные, молочнокислые продукты.

Овощи, фрукты, ягоды поставляют основное количество аскорбиновой кислоты, Р-активных веществ и каротина, а также пантотеновую и фолиевую кислоты, инозит и др. Природными концентратами аскорбиновой кислоты и витамина Р являются черная смородина и цитрусовые плоды, в частности апельсины, в которых наряду с этими витаминами содержится особенно много пектиновых веществ (12%) и инозита (250 мг%).

Высокое качество пищевых продуктов в СССР обеспечивается соблюдением требований ГОСТ и временных технических условий (ВТУ), которые обязательны для всех организаций, производящих и поставляющих пищевые продукты. Выпуск нестандартных пищевых продуктов, а также их фальсификация караются по закону.

К пищевым продуктам, ограниченно допущенным в СССР, относятся суррогаты, которые могут выпускаться взамен натуральных пищевых продуктов только по специальному разрешению, например ячменный кофе, фруктовый чай и др. Суррогаты не должны содержать каких-либо вредных веществ.

Пищевая и биологическая ценность основных пищевых продуктов

Сорбционные свойства характеризуют способность пищевых продуктов поглощать из окружающей среды пары воды и летучие вещества. Эти свойства играют большую роль при перевозках и хранении пищевых продуктов.

Различают четыре типа сорбции: адсорбцию - поглощение веществ поверхностью продукта; абсорбцию - поглощение веществ всей массой продукта; хемосорбцию - химическое взаимодействие между веществом и продуктом; капиллярную конденсацию - образование жидкой фазы в микро- и макрокапиллярах твердых продуктов.

Процесс, обратный сорбции, - десорбция - определяет переход веществ из поверхностного слоя в окружающую среду.

Сорбция и десорбция паров и газов приводят к изменению качества продукта, который может усыхать из-за недостатка влаги в окружающей атмосфере, приобретать неприятный запах или терять аромат при нарушении условий хранения.

На практике наибольшее значение имеют сорбция и десорбция водяных паров.

Увлажнение пищевого продукта, т.е. сорбция им водяных паров, наблюдается тогда, когда парциальное давление пара у поверхности продукта меньше парциального давления пара в воздухе.

Процесс испарения (десорбция) происходит при большем давлении паров у поверхности продукта по сравнению с давлением пара в воздухе. Если давления паров в воздухе и в окружающей среде равны, то наступает состояние динамического равновесия. Влажность продукта, соответствующая состоянию равновесия, называется равновесной влаж­ностью. Она зависит главным образом от химического состава и состояния продукта, а также от относительной влажности и температуры воздуха.

Гигроскопичность - свойство продуктов поглощать влагу из окружающей среды и удерживать ее капиллярами и всей поверхностью. Гигроскопичность пищевых продуктов зависит от их структуры и состава, а также от температуры и влажности окружающей среды. Как правило, порошкообразные пищевые продукты (сухое молоко, кофе), чай, су­шеные фрукты и овощи отличаются высокой гигроскопичностью.

Значительно повышает гигроскопичность продукта содержание в нем веществ, способных активно поглощать пары воды из окружающей атмосферы. К таким веществам относятся фруктоза, обусловливающая гигроскопичность меда, соли кальция и магния, присутствующие в качестве примесей в поваренной соли и обусловливающие ее гигроскопичность.

Таким образом, пищевые продукты характеризуются комплексом простых и сложных свойств - химических, физических, технологических, физиологических и т.д. Совокупность этих свойств определяет их полезность для человека, т.е. потребительские свойства. Полезность продуктов питания характеризуют их пищевая, биологическая, физиологическая, энергетическая ценность, доброкачественность, органолептические свойства.

Пищевая ценность продукта - это наиболее широкое понятие, включающее содержание в продукте основных химических веществ: углеводов, жиров, белков в пищевом продукте, степень их усвоения и энергетическую ценность, их вкусовые достоинства. Пищевая ценность продукта тем выше, чем больше она удовлетворяет потребность организма в пищевых веществах и чем полнее соответствует принципам сбалансированного питания.

Биологическая ценность продукта отражает прежде всего качество белков в нем, аминокислотный состав и перевариваемость. В более широком смысле в это понятие включают содержание в пищевом продукте жизненно важных биологически активных веществ - микроэлементов, незаменимых жирных кислот, витаминов и др.

Физиологическая ценность продукта характеризуется наличием в нем полезных элементов, необходимых для осуществления процессов основного обмена веществ в организме. Она отражает также влияние потребляемых продуктов на нервную, сердечно-сосудистую, пищеварительную и другие системы организма, устойчивость к инфекционным заболеваниям. Например, кофеин в чае и кофе, теобромин в шоколаде, спирт в напитках возбуждающе действуют на нервную и сердечно-сосудистую систему. Иммунные тела в молоке, антимикробные вещества в яйце повышают сопротивляемость организма к инфекционным заболеваниям. Пищевые кислоты (молочная, яблочная) подавляют гнилостные процессы в кишечнике.

Энергетическая ценность продукта - это энергия, которая высвобождается из пищевых веществ продуктов в процессе биологического окисления и используется для обеспечения физиологических функций организма.

Доброкачественными считаются такие пищевые продукты, которые не содержат вредных для организма человека веществ (соли тяжелых металлов, ядовитые органические соединения, ядовитые алкалоиды, гликозиды, токсины – яды, выделяемые некоторыми плесневыми грибами), а также не имеют несвойственных им привкусов и запахов. В пищевых продуктах не допускаются патогенные микроорганизмы, плесневые грибы, вредители. Строго регламентируется содержание меди, олова, никеля, металлопримесей, не допускаются соли свинца, ртути, мышьяка.

Органолептические свойства продуктов характеризуются показателями, определяемыми органами чувств: внешний вид, консистенция, вкус и запах. Они тесно связаны с усвояемостью продукта. Наиболее важным показателем является вкус. Как правило, высокими вкусовыми достоинствами отличаются продукты, универсальные по химическому составу и содержащие ценные пищевые кислоты и ароматические вещества.

Усвояемость пищевого продукта – степень усвоения пищевого продукта в процентах.

На усвояемость переваренной пищи влияют; химический состав, ее кулинарная обработка, внешний вид, объем, режим питания, условия приема пищи, состояние пищеварительного аппарата и др.

Усвояемость пищи животного происхождения в среднем составляет 90%, растительного – 65%, смешанной – 85%. Наилучшим образом перевариваются углеводы, усвояемость их достигает 98-99%. Переваривание белков осуществляется сложнее. Белок из продуктов животного происхождения усваивается в кишечнике на 90% и более, а из растительных - на 60-80%. Снижение усвояемости белков растительного происхождения связано с тем, что оболочки растительных клеток содержат значительное количество клетчатки, не поддающейся действию ферментов пищеварительных соков.

Жир усваивается с различной интенсивностью. Жиры с более низкой точкой плавления усваиваются быстрее, твердые жиры с высокой точкой плавления - значительно хуже. Сливочное масло усваивается на 98%.

Для более полного усвоения пищевых веществ в организме большое значение имеет правильное соотношение их в пищевом рационе. Недостаток какого-либо пищевого вещества, например белка, снижает усвояемость других пищевых веществ, а избыток жира также оказывает отрицательное влияние на весь процесс усвоения.

Кулинарная обработка пищи способствует пищеварению, а, следовательно, и ее усвоению. Пища протертая, отварная усваивается лучше пищи кусковой и сырой. Внешний вид, вкус, запах пищи усиливают выделение пищеварительных соков, способствуя ее усвояемости. Режим питания и правильное распределение суточного объема пищи в течение дня, условия приема пищи (интерьер столовой, вежливое, доброжелательное обслуживание, чистота посуды, опрятный внешний вид поваров), настроение человека также повышают ее усвояемость.

Сохраняемость - способность товара сохранять потребительские свойства при хранении и транспортировании в течение установленных сроков, а также после них. Показателями сохраняемости являются – срок календарной продолжительности хранения, потери, выход стандартной продукции;

Готовность к употреблению - степень обработки, удобство в приготовлении;

Безопасность - отсутствие в пищевых продуктах вредных для организма человека веществ (соли тяжелых металлов, токсины, яды), несвойственных привкусов и запахов.

Энергетическая ценность пищевых продуктов (калорийность) - это количество энергии, которое образуется при окислении жиров, белков и углеводов, содержащихся в продуктах, и используется для физиологических функций организма.

Калорийность - важный показатель пищевой ценности продуктов, выражается в килокалориях (ккал) или в килоджоулях (кДж). Одна килокалория равна 4,184 килоджоуля (кДж), Энергетическая ценность белков равна 4,0 ккал/г (16,7 кДж/г). Она рассчитывается обычно на 100 г съедобной части пищевого продукта для определения энергетической ценности продукта, следует знать его химический состав.

Пищевые продукты характеризуются комплексом простых и сложных свойств - химических, физических, технологических, физиобиологических и др. Совокупность этих свойств определяет их полезность для человека. Полезность продуктов питания характеризуется пищевой, биологической, физиобиологической, энергетической ценностью, доброкачественностью и органолептическими свойствами.

Энергетическая ценность продукта - это энергия, которая высвобождается из пищевых веществ продуктов в процессе биологического окисления и используется для обеспечения физиологических функций организма.

В процессе жизнедеятельности человек затрачивает энергию, количество которой зависит от возраста, физиологического состояния организма, характера трудовой деятельности, климатических условий обитания и др. Энергия образуется в результате окисления содержащихся в клетках организма углеводов, жиров, белков и в небольшой степени других соединений - кислот, этилового спирта и т.д. Поэтому необходимо знать количество расходуемой в сутки человеком энергии, чтобы своевременно восстанавливать её запасы. Энергия, которую затрачивает человек, проявляется в форме теплоты, поэтому количество энергии выражают в тепловых единицах.

Необходимые вещества поступают в организм с пищей. Используют их также для обеспечения составных частей клеток, тканей и органов, для роста, увеличения массы тела. Поэтому пища должна обеспечивать оптимальные условия для жизни и работоспособности человека.

Достаточное количество в организме пищевых продуктов высокого качества позволяет организовать сбалансированное (рациональное) питание, т.е. организованное и своевременное снабжение организма продуктами, содержащими все вещества, необходимые для обновления тканей, обеспечения энергозатрат и являющиеся регуляторами многочисленных обменных процессов. При этом вещества пищи должны находиться между собой в благоприятных соотношениях. Количество незаменимых компонентов при сбалансированном питании превышает 56 наименований.

Сбалансированное питание требует определенного режима, т.е. распределения приема пищи в течение дня, соблюдения благоприятной температуры пищи и т.д. При сбалансированном питании человека такие основные вещества, как белки, жиры и углеводы, должны находиться в пище в соотношении 1:1:4; а для людей, занимающихся тяжелым физическим трудом, соответственно 1:1:5. Количество белков, жиров и углеводов, необходимое для людей разных профессий при сбалансированном питании, различно. Так, для людей профессий, не связанных с применением физического труда, суточная потребность составляет (в г): в белках - 100, в жирах 87, в углеводах - 310. для людей, профессии которых связаны с применением механизированного труда, такая потребность составляет соответственно 120, 105 и 375 г, а с применением немеханизированного труда - 200, 175 и 620 г.

Таблица

Суточная потребность человека в пищевых веществах

Пищевые вещества Суточная норма
Белки, г 85
Жиры, г 102
Усвояемые углероды, г 382
В том числе моно- и дисахариды 50-100
Минеральные вещества, мг
Кальций 800
Фосфор 1200
Магний 400
Железо 14
Витамины
В 1 мг 1,7
В 2 , мг 2,0
РР, мг 19
В 6 , мг 2,0
В 12 , МКГ 3,0
В 9 , МКГ 200
С, мг 70
А (в пересчете на ретиноловый эквивалент), мкг 1000
Е, ME 15*
Д, ME 100**
Калорийность, кал 2775

15* = 10 мг токоферола.

100** = 2,5 мкг витамина ДЗ.

Важное значение в питании человека имеет природа белков, жиров и углеводов. Полагают, что общее количество белков должно давать 15 % суточной калорийности (энергетической ценности), причем из этого количества на долю белков животного происхождения должно приходиться более 50 %, на долю жиров - около 30 % калорийности (из них 25 % - на растительные), на долю углеводов - несколько более 50 % (из них на крахмал - 75 %, на сахара 20, на пектиновые вещества 3, на клетчатку 2 %).

Энергетические затраты человека складываются из расхода энергии на основной обмен, прием пищи и трудовую деятельность.

Энергия, расходуемая организмом на основной обмен, связана с работой внутренних органов (сердца, легких, эндокринных желез, печени, почек, селезенки и др.). Считается, что взрослый мужчина массой 70 кг на основной обмен в сутки расходует 1700 ккал, или 7123 кдж, а женщина - на 5 % меньше. У пожилых людей расход энергии ниже, чем у молодых.

Прием пищи увеличивает расход энергии на основной обмен организма в среднем на 10-15 % в сутки и зависит от характера занятий человека. Так, при разных видах работы затрачивается примерно следующее количество энергии (ккал/ч):

при легкой физической механизированной работе - 75; при работе средней тяжести, частично механизированной - 100;

при напряженной физической немеханизированной работе - 150-130;

при очень тяжелой физической работе и занятиях спортом - 400 и более.

По энергетическим затратам взрослое население страны делят на пять групп, детское - на восемь. Кроме того, отдельно выделяют энергетические затраты мужчин и женщин в возрасте 18-29, 30-39, 40-59 лет. Особую группу составляют люди пожилого возраста. Энергетическая ценность пищевых продуктов выражается в ккал или кДж (1 ккал соответствует 4,186 кДж).

В табл. приведены данные, характеризующие энергетические затраты мужчин и женщин в возрасте от 18 до 60 лет при различных видах труда. При расчете потребности в энергии для населения в указанном возрасте средняя масса тела принята для мужчин 70 кг, для женщин -60 кг.

Таблица

Характеристика энергетических затрат мужчин и женщин разного возраста при различных видах труда

Группа интенсивности труда Потребность в энергии, ккал Характер труда
мужчины женщины
1 2800-2500 2400-2200 Люди преимущественно умственного труда (работники науки, культуры, служащие)
.2 3000-2750 2550-2350 Люди легкого физического труда (связисты, швейники и др.)
3 3200-2950 2700-2500 Люди физического труда средней тяжести (слесари, шоферы, железнодорожники)
4 3700-3450 3150-2900 Люди значительного физического труда (строители, металлурги, сельскохозяйственные рабочие)
5 4300-3900 Люди тяжелого физического труда (грузчики, каменщики)

До недавнего времени считалось, что при окислении 1 г белка, усвояемых углеводов и органических кислот в организме человека выделяется около 4,1 ккал (17,2 кДж), при окислении 1 г жиров 9,3 ккал (38,9 кДж), Позднее было установлено, что энергетическая ценность углеводов несколько ниже, чем белков (табл.).

Таблица

Коэффициенты энергетической ценности различных пищевых веществ

Жиры и углеводы при нормальном процессе усвоения в организме расщепляются до конечных продуктов (углекислоты и воды), как и при обычном сгорании. Белки же расщепляются не полностью, с выделением таких продуктов, как мочевина, креатинин, мочевая кислота и других азотистых соединений со значительной потенциальной тепловой энергией. Поэтому количество тепла при полном окислении белка до конечных продуктов (аммиака, воды и углекислоты) оказывается большим, чем при окислении его в организме.

Энергетическую ценность пищевых продуктов можно определить по химическому составу. Так, если пастеризованное молоко содержит (в %): белков - 2,8, жиров - 3,2 и сахаров - 4,7, то энергетическая ценность 100 г молока составит 57,86 ккал (4,0 ккал *2,8 + 9,0 ккал* 3,2 +3,8 ккал* 4,7), или 241,89 кДж.

Если в составе суточного пищевого рациона имеется (в г):

белков - 80, углеводов - 500, жиров - 80, то общая энергетическая ценность его составит 2915 ккал (4,0 ккал * 80 +9,0 ккал *80+3,8 ккал * 500), или 12 184,7 кДж.

В зависимости от химического состава энергетическая ценность пищевых продуктов различна (табл.).

Таблица

Энергетическая ценность различных пищевых продуктов

Наименование продукта Содержание % Энергетическая
белков жиров углеводов ценность, ккал(кДж)
Мука пшеничная в/с 10,3 0,9 74,2 327(1388)
Крупа гречневая 12,6 2,6 68 329(1377)
Макаронные изделия в/с 10,4 0,9 75,2 332(1389)
Хлеб ржаной из обдирной муки 5,6 1,1 43,3 199(833)
Булки городские 7,7 2,4 53,4 254(1063)
Сахар-песок - - 99,8 374(1565)
Шоколад без добавлений 5,4 35,3 47,2 540(2259)
Печенье сахарное из муки высшего сорта 7,5 11,8 74,4 417(1745)
Молоко пастеризованное 2,8 3,2 4,7 58(243)
Сметана 30% жирности 2,6 30,0 2,8 293(1228)
Творог жирный 14 18 1,3 226(945)
Молоко сгущенное стерилизованное 7,0 7,9 9,5 136(565)
Сыр Голландский 26,8 27,3 - 361(1510)
Маргарин сливочный 0,3 82,3 1 746(3123)
Масло сливочное несоленое 0,6 82,5 0,9 748(3130)
Капуста белокочанная 1,8 - 5,4 28(117)
Картофель 2,0 0,1 19,7 83(347)
Томаты грунтовые 0,6 - 4,2 19(77)
Яблоки 0,4 - 11,3 46(192)
Виноград 0,4 - 17,5 69(289)
Говядина 1 категории 18,9 12,4 - 187(782)
Колбаса Докторская 13,7 22,8 - 260(1088)
Окорок Тамбовский вареный - 19,3 20,5 - 262(1096)
Яйца куриные 12,7 11,5 0,7 157(657)
Карп 16 3,6 1,3 96(402)
Осетр сибирский 15,8 15,4 1 202(845)
Сельдь атлантическая 17 8,5 - 145(607)

Наиболее высокой энергетической ценностью обладают: сливочное масло, маргарин, шоколад, сахарное печенье и сахар-песок, низкой - молоко, яблоки, капуста, некоторые виды рыбы (карп, треска и др.).

Таблица

Химический состав пищевых продуктов

Продукт

белки

жиры

углеводы

зола

Вареные колбасы:

Диетическая

Докторская

Отдельная

Варено-копченые колбасы:

Любительская

Сервелат

Грудинка

Копчено-запеченая

Окорок тамбовский вареный

Консервы:

Фарш свиной

Баранина тушеная

Говядина тушеная

Хлеб и хлебобулочные изделия:

Ржаной простой

Столовый подовый

Пшеничный из муки:

Высшего сорта

Батоны нарезные из муки 1 с.

Макаронные изделия:

Высшего сорта

Растительные масла рафиниров.

Подсолнечное

Арахисовое

Оливковое

Кукурузное

Маргарин:

Молочный

Сливочный

Кондитерские изделия

Карамель

Какао-порошок

Мармелад

Халва тахинская

Торт слоенный

Чай без сахара

Кофе без сахара

Молоко 3,2% жирности

Сливки 20% жирности

Творог жирный

Расчет энергетической ценности пищевых продуктов

Для определения теоретической калорийности 100 г пищевых продуктов, необходимо знать удельную калорийность питательных веществ (1г жира выделяет 9 ккал; 1 г белка - 4,1 ккал; 1 г углеводов - 3,75 ккал) и умножить на количество содержащихся в продуктах. Сумма полученных показателей (произведений) определяет теоретическую калорийность пищевого продукта. Зная калорийность 100 г продукта, можно определить калорийность любого его количества. Зная теоретическую калорийность, например углеводов, можно найти практическую (фактическую) калорийность углеводов путем умножения результата теоретической калорийности углеводов на усвояемость в продуктах (для углеводов - 95,6 %) и деления произведения на 100.

Пример расчета. Определите теоретическую калорийность 1 стакана (200 г) молока коровьего.

По таблице химического состава или учебнику товароведения находим средний химический состав коровьего молока (в %):

жира - 3,2; белков - 3,5; молочного сахара - 4,7; золы - 0,7.

Решение:

Калорийность жиров в 100 г молока - 9x3,2 = 28,8 ккал. Калорийность белков в 100 г молока - 4 х 3,5 = 14,0 ккал. Калорийность углеводов в 100 г молока - 3,75 х 4,7 = 17,6 ккал.

Теоретическая калорийность 1 стакана молока (200 г) будет равна 60,4 х 2 = 120,8 ккал (28,8 + 14,0 + 17,6) х 2: Фактическая калорийность составит с учетом усвояемости жира - 94 %, белков - 84,5 %, углеводов - 95,6 %.

17,6*95/100 + 28,8*94/100+ 14,0*84,5/100= 54,73 ккал

Для перевода килокалорий в килоджоули число килокалорий умножают на 4,184 (по системе СИ).

2417 0

Годятся в пищу нам со дня творенья
Животные продукты и растенья,
Солей и минералов пестрый ряд,
Лекарства, что недуги исцелят.

Ибн Сина


Число потребляемых натуральных продуктов ограничено: в основном это свежие овощи, фрукты, ягоды, орехи, мед. Большинство продуктов употребляют после переработки: колбасные, кондитерские, хлебобулочные изделия, кисломолочные продукты, различные блюда и т.д. Пищевые продукты различаются по химическому составу, перевариваемости, усвояемости, характеру воздействия на организм человека, что надо учитывать при построении лечебных диет и выборе оптимальных способов кулинарной переработки.

В одном из руководств тибетской медицины говорится: «Нет в природе такого вещества, которое не годилось бы в качестве лечебного средства. Если посмотреть на природу взглядом врача, ищущего лекарственные средства, то можно сказать, что мы живем в мире лекарств». Многие дары природы успешно используются в народной медицине и служат сырьем для приготовления различных лекарственных препаратов.

Краткая характеристика диетических свойств основных пищевых продуктов

Молоко

Содержит белки, полноценные по содержанию аминокислот. Жирные кислоты, входящие в состав липидов молока, в основном насыщенные. В молоке большое содержание кальция, магния и фосфора, находящиеся в легкоусвояемой форме.

Молоко и получаемые из него продукты содержат большинство необходимых организму пищевых веществ, которые благоприятно сбалансированы и хорошо усваиваются. Молоко, особенно в теплом виде, требует для переваривания минимального напряжения секреторной функции желудка и быстро покидает его.

Молоко и многие молочные продукты обладают диетическими свойствами. В натуральном виде и для приготовления различных блюд оно незаменимо в лечебном питании многих заболеваний. Например, в молоке относительно много калия и мало натрия, что позволяет увеличить мочеотделение при отеках.

Кисломолочные напитки (кефир, ацидофилин и др.)

Сравнительно с молоком эти продукты легче перевариваются и усваиваются, стимулируют выделение пищеварительных соков, нормализуют двигательную функцию кишечника и подавляют в нем гнилостные бродильные процессы. Ценность кисломолочных продуктов состоит в том, что они содержат в своем составе микроорганизмы и продукты их жизнедеятельности (антибиотики), угнетающие деятельность гнилостных бактерий в кишечнике.

Ацидофильные напитки полезны при хронических гастритах с низкой кислотностью желудочного сока, колитах, фурункулезе и т.д.

Сыры

Являются весьма ценными пищевыми продуктами. К подобным продуктам кроме сыра можно отнести только яйца и икру. В сыре сконцентрированы пищевые вещества молока. Сыры характеризуются высоким содержанием белка, жира, легкоусвояемого кальция и фосфора. В лечебном питании применяют неострые, малосоленые и предпочтительно нежирные сыры, чаще в диетах при туберкулезе, хронических заболеваниях кишечника и печени, в периоде выздоровления после инфекционных болезней, при переломах костей. Тертый сыр переваривается легче, чем нарезанный ломтиками. В плавленых сырах меньше белков, жиров, кальция, чем в обычных твердых сырах.

Творог

Отличается высоким содержанием полноценного легкоусваяемого белка, кальция и фосфора. Широко используется в лечебном питании (атеросклероз, болезни печени, сахарный диабет, ожоги, переломы костей и другие заболевания).

Мясо и мясные продукты

Мясо полезно как источник полноценного белка, ряда витаминов и минеральных веществ. Белки мяса полноценные (достаточное содержание незаменимых аминокислот). Содержание белка в различных видах мяса: говядина — 18—20%, жирная свинина — 11,7%, беконная свинина — 17%, баранина — 15,6 — 19,8%, птица — 18—21%. Жиры мяса содержат в основном насыщенные жирные кислоты.

Мясо и мясные продукты содержат относительно много витаминов группы В, фосфора, калия, железа и цинка. Минеральные вещества, содержащиеся в мясе, хорошо усваиваются.

В мясе кролика содержится 21% белка, 7—15% жира. Мышечные волокна мяса кролика мелкие, что способствует более легкому перевариванию. Сравнительно с мясом других животных в крольчатине меньше холестерина, больше фосфолипидов, железа. Все это позволяет широко использовать мясо кролика в различных диетах.

Перевариваемость мяса зависит от вида, возраста и упитанности животных, части туши, вида кулинарной обработки. Вареное или рубленое мясо проваривается лучше, чем жареное или куском. Очень тощее мясо переваривается хуже упитанного, говядина — хуже телятины, курятина — хуже цыпленка. Части туши, бедные соединительной тканью (спинная, поясничная), перевариваются лучше, чем богатые ею (шея, голяшки и др.). Мясо, богатое соединительной тканью, рекомендуется при запорах, ожирении, атеросклерозе.

Мясные продукты, особенно субпродукты, содержат большое количество экстрактивных веществ, в том числе пуринов, которые преобразуясь в организме человека в мочевую кислоту, способствует развитию подагры. Отварное мясо содержит меньше пуринов, чем жареное или тушеное, так как большая часть пуринов переходит при варке в бульон. При тепловой обработке мяса происходят потери питательных веществ. Наименьшие потери пищевых веществ наблюдаются при тушении мяса, приготовлении рубленых котлет, а наибольшие — при варке и жарении. Жарение — наименее выгодный и наименее рациональный вид тепловой обработки мяса. В лечебном питании используют телятину, говядину, отдельные категории свинины и баранины, мясо кролика, кур, индеек. Не рекомендуются утки и гуси, содержащие большое количество жира.

Из субпродуктов (внутренние органы и части туш) наиболее важна в лечебном питании печень, богатая кроветворными микроэлементами и витаминами. Кроветворные вещества хорошо усваиваются из вареной, тушеной, жареной печени, паштетов. Поэтому в диетах, в частности при малокровии, нет необходимости применять только сырую и полусырую печень.

В лечебном питании используют вареные колбасы, особенно докторскую, диетическую, молочную, диабетическую. Кровяная и ливерная колбаса эффективны при малокровии. В лечебном питании исключаются копченые, полукопченые, жирные, пряные и острые колбасы. При некоторых болезнях почек надо ограничивать содержание белков в рационе. В этом случае ограничивается и мясо. Жареное мясо не рекомендуется при заболеваниях желудка, печени, желчевыделительной системы, поджелудочной железы.

Лисовский В.А., Евсеев С.П., Голофеевский В.Ю., Мироненко А.Н.

ЛЕКЦИЯ 1.

ОСНОВНЫЕ СВОЙСТВА ПИЩЕВЫХ ПРОДУКТОВ И СЫРЬЯ.

КЛАССИФИКАЦИЯ ОСНОВНЫХ ПРОЦЕССОВ

ПИЩЕВОЙ ТЕХНОЛОГИИ.

ПРИНЦИПЫ АНАЛИЗА И РАСЧЕТА ПРОЦЕССОВ И АППАРАТОВ

1.1. ОСНОВНЫЕ СВОЙСТВА ПИЩЕВЫХ ПРОДУКТОВ И СЫРЬЯ

Гидромеханические процессы - это процессы, скорость которых определяется законами механики и гидродинамики. К ним относятся процессы перемещения жидкостей и газов по трубопроводам и аппаратам, перемешивания в жидких средах, разделения суспензий и эмульсий путем отстаивания, фильтрования, центрифугирования, псевдоожижения зернистого материала.

Теплообменные процессы - это процессы, связанные с переносом теплоты от более нагретых тел (или сред) к менее нагретым. К ним относятся процессы нагревания, пастеризации, стерилизации, охлаждения, конденсации, выпаривания и т. п. Скорость тепловых процессов определяется законами теплопередачи.

Чугуны представляют собой многокомпонентные сплавы железа с углеродом, а также с кремнием, марганцем, фосфором. Чугуны применяют для изготовления как отдельных деталей машин, так и целых аппаратов: цилиндров насосов и компрессоров, зубчатых и червячных колес, труб и трубопроводной арматуры.

Основным методом изготовления деталей из чугунов является литье.

Чугуны хорошо сопротивляются сжатию, плохо - изгибу и растяжению, а также скалыванию.

Цветные металлы, в основном алюминий и медь, широко применяют в пищевом машиностроении.

Алюминий обладает достаточной прочностью, низкой плотностью, хорошей теплопроводностью, легко штампуется и прокатывается. Для изготовления аппаратуры используют марки АОО и АО с содержанием алюминия соответственно не менее 99,7 и 99,6%.

Медь является ценным конструкционным материалом. Для изготовления пищевой аппаратуры применяют марки М2 и М3.

Медь подобно алюминию хорошо тянется, штампуется, вальцуется как в горячем, так и в холодном состоянии. Для изготовления аппаратуры - теплообменных аппаратов, ректификационных колонн и др. - применяют отожженную медь. Из сплавов на основе меди используют бронзы и латуни.

Неметаллические материалы неорганического и органического происхождения используют в пищевой промышленности достаточно широко. Из материалов неорганического происхождения для изготовления самых различных аппаратов (перегонных и выпарных аппаратов, теплообменников, ферментаторов, ректификационных колонн, трубопроводов и т. д.) используют стекло. Применение стекла повышает санитарно-гигиенические условия производства продуктов питания.

Из материалов органического происхождения применяют конструкционные пластические массы: полиэтилен, поликарбонат, полисульфон, полиамиды, фторопласт-4, полистирол и др. Полиэтилен используют для изготовления емкостей для пищевого сырья, футеровки и заполнения аппаратов и других целей. Например, в непрерывном процессе получения шампанских вин для увеличения площади поверхности контакта фаз в реакторах применяют цилиндрические полиэтиленовые насадки.

Из поликарбоната и полиамидов изготовляют некоторые узлы оборудования, посуду и др. Фторопласт-4 применяют для изготовления прокладок и других уплотняющих деталей, футеровки аппаратов. Из полисульфона и поликарбоната изготовляют пленки для мембранных аппаратов. Полистирол применяют для упаковки и изготовления посуды.

Химическая стойкость материалов. Конструкционный материал для изготовления аппаратов, работающих в агрессивных средах, должен обладать высокой химической стойкостью. Преждевременный выход машин и их деталей из строя часто является следствием неправильного выбора материала для их изготовления.

Продукты коррозии являются причиной снижения качества продукта, загрязняя его. Они могут испортить цвет, ухудшить вкус, придать запах продукту. Кроме того, материал аппарата может служить катализатором, интенсифицирующим течение побочных процессов. Контакт обрабатываемых веществ с коррозиенестойким материалом может в некоторых случаях препятствовать проведению процессов, например биохимических.

Оценка материала по коррозиестойкости проводится по специальной шкале (табл. 1.3.1).

Таблица 1.3.1. Шкала коррозиестойкости металлов

Группа стойкости

коррозиестойкости

Скорость коррозии,

Совершенно стойкие

Весьма стойкие

Пониженно-стойкие

Малостойкие

Нестойкие

Для оценки интенсивности процесса коррозии применяют глубинный или массовый показатель. Глубинный показатель при равномерной коррозии измеряется уменьшением толщины металла (в мм) в год. Для изготовления аппаратуры используют материалы, скорость коррозии которых не превышает 0,1...0,5 мм в год.

Для защиты металлов от коррозии их покрывают металлическими и неметаллическими пленками, облицовывают. Из металлов для этих целей используют хром, никель, алюминий и др., из неметаллов - эмали, полимерные материалы и различные лаки.

Технико-экономический выбор коррозиестойких материалов. При выборе материалов должны учитываться следующие факторы: первоначальная стоимость основного технологического оборудования; затраты, обусловленные коррозией или устранением ее последствий в процессе технического обслуживания оборудования в рассматриваемом коррозиестойком исполнении; затраты, обусловленные коррозией или устранением ее последствий при текущих и капитальных ремонтах оборудования; убытки от простоев во время межремонтного срока службы оборудования, обусловленные коррозией или устранением ее последствий. Вариант с минимальными затратами является наиболее рациональным для каждой позиции разрабатываемой технологической схемы.

1.3.5. ОПРЕДЕЛЕНИЕ ОСНОВНЫХ РАЗМЕРОВ АППАРАТОВ

Основные типы процессов и аппаратов. Машины и аппараты по принципу организации процесса бывают периодического, непрерывного и смешанного действия.

В периодическом процессе отдельные его стадии (например, загрузка теста в смеситель , нагрев, смешение и выгрузка) осуществляются в одном аппарате (машине), но в определенной последовательности.

В непрерывном процессе отдельные его стадии осуществляются одновременно, но в разных местах одной машины или аппарата или в разных машинах и аппаратах.

В смешанных процессах отдельные стадии осуществляются периодически в машинах и аппаратах периодического действия, а другие стадии - в машинах и аппаратах непрерывного действия.

В зависимости от изменения параметров процесса (температур, давлений, скоростей, концентраций и т. д.) во времени они делятся на установившиеся (стационарные) и неустановившиеся (нестационарные).

В установившихся процессах значения параметров постоянны во времени (непрерывные процессы), а в неустановившихся - изменяются во времени, т. е. являются функциями положения в пространстве и во времени (периодические процессы).

Непрерывные процессы отличаются от периодических по распределению времени пребывания частиц среды в аппарате и связанных с ним изменений других факторов (температур, концентраций), влияющих на процесс. В периодически действующем аппарате все частицы находятся одинаковое время, в непрерывнодействующем - различное время.

Для характеристики периодических и непрерывных процессов используют следующие понятия:

продолжительность процесса τ - время, необходимое для завершения всех его стадий от загрузки исходного сырья до выгрузки готового продукта;

период процесса ∆τ - время от начала загрузки исходного сырья данной партии до начала загрузки исходного сырья следующей партии;

степень непрерывности τ/∆τ - частное от деления продолжительности процесса на его период.

Периодический процесс характеризуется периодом ∆τ> 0, степенью его непрерывности τ / ∆τ <1 и единством места осуществления отдельных стадий процесса.

Непрерывный процесс характеризуется периодом ∆τ→0, степенью его непрерывности τ / ∆τ → ∞ и единством места проведения отдельных стадий.

Непрерывные процессы в настоящее время широко внедряются в промышленность благодаря значительным преимуществам перед периодическими. Такие преимущества заключаются в возможности специализации и типизации аппаратуры для каждой стадии процесса, в стабилизации процесса во времени, стабилизации и повышении качества продукта, во внедрении автоматических систем управления технологическим процессом (АСУ ТП).

По распределению концентраций (температур) в рабочем объеме аппараты бывают идеального смешения, идеального вытеснения и промежуточного типа.

В аппаратах идеального смешения концентрация (температура) во всем объеме одинакова и равна концентрации (температуре) на выходе из аппарата.

В аппарате идеального вытеснения концентрация (температура) меняется плавно от начальной до конечной.

В реальных аппаратах поле концентраций (температур), как правило, отличается от схем идеального перемешивания и идеального вытеснения. Они относятся к аппаратам промежуточного типа.

В аппаратах промежуточного типа распределение, или поле, концентраций (температур) в рабочем объеме можно характеризовать числом псевдосекций идеального смешения или коэффициентами диффузии.

Степень приближения поля концентраций (температур) к полям в аппаратах идеального смешения или вытеснения устанавливают экспериментально на основании кривых отклика на вводимое в поток возмущение. Так, при количестве псевдосекций N=1 имеем аппарат идеального смешения, при N →∞ - аппарат идеального вытеснения. При промежуточном значении числа псевдосекций N аппарат относится к аппаратам промежуточного типа.

Распределение концентраций (температур) в аппарате необходимо знать для вычисления средней движущей силы процесса и времени пребывания.

Рассмотрим характер изменения температур в аппаратах непрерывного действия идеального смешения, идеального вытеснения и промежуточного типа.

В аппарате идеального смешения (рис. 1.3.1, а) жидкость идеально перемешана. Температура поступающей в аппарат жидкости tH мгновенно принимает значение температуры жидкости в аппарате tK , которая равняется конечной температуре жидкости на выходе из аппарата.

Рис. 1.3.1. Характер изменения температуры при нагревании жидкости в аппаратах:

где: а - идеального смешения; б - идеального вытеснения; в - промежуточного типа: ts - предельная температура в процессе (например, температура греющего пара)

В аппарате идеального вытеснения (рис. 1.3.1, б) поступающие в аппарат объемы жидкости не смешиваются с предыдущими, полностью вытесняя их. В результате этого температура жидкости плавно меняется по длине или высоте аппарата от tH до tK .

В аппаратах промежуточного типа (рис. 1.3.1, в ) отсутствует идеальное смешение жидкости, но нет и идеального вытеснения. Вследствие этого температура жидкости изменяется первоначально скачкообразно от tH до t " H , как в аппарате идеального смешения, а затем плавно изменяется от t н" до t к, как в аппарате идеального вытеснения.

Движущей силой процесса является разность между предельной температурой и рабочей. На рис. 1.3.1 показано изменение движущей силы (разности температур), пропорциональное величинам заштрихованных площадей. Максимальные величины движущей силы соответствуют аппаратам идеального вытеснения, минимальные - аппаратам идеального смешения, промежуточные - аппаратам промежуточного типа.

Если рабочий объем аппарата идеального смешения Vp разделить на N последовательно соединенных секций объемом каждая Vр/N, то движущую силу можно значительно увеличить, причем чем больше N , тем больше будет и движущая сила. Практически при N=8...16 движущая сила такого аппарата промежуточного типа будет приближаться к движущей силе в аппарате идеального вытеснения.

Расчет аппаратов (машин) периодического действия. При расчете аппаратов (машин) периодического действия задаются производительностью в единицу времени (в час, сутки и т. д.) и периодом процесса ∆τ.

Число партий продукта в сутки, которое производится одним аппаратом или машиной, b =24/∆τ.

Число партий, которое должно быть выпущено в сутки для достижения заданной производительности Vτ, a=V τ /V где Vр - рабочий объем аппарата.

Требуемое число аппаратов или машин n=a/b=Vτ ∆τ/(24Vр).

Если заданная производительность обеспечивается работой одного аппарата или машины (n=1), то его рабочий объем https://pandia.ru/text/78/416/images/image005_120.gif" width="133" height="25 src=">, (1.3.4)

где М - масса получаемого продукта; Vр - рабочий объем аппарата; - продолжительность процесса; - объемный коэффициент скорости процесса; - средняя движущая сила процесса.

В общем случае https://pandia.ru/text/78/416/images/image009_87.gif" width="139" height="53 src=">.

Если объем сырья перерабатываемого в единицу времени, составляет , то средняя производительность аппарата в единицу времени (в кг/с, кг/ч)

https://pandia.ru/text/78/416/images/image012_67.gif" width="112" height="47 src=">.

Между производительностью аппарата и его рабочим объемом существует определенная связь.

Из уравнения расхода =fv, где f - площадь поперечного сечения аппарата; v - линейная скорость. Умножим и разделим правую часть этого уравнения на длину аппарата L , тогда =fL v/L = /, или

https://pandia.ru/text/78/416/images/image006_103.gif" width="13 height=15" height="15"> определим из сопоставления уравнений (1.3.4) и (1.3.5):

Промышленное оборудование" href="/text/category/promishlennoe_oborudovanie/" rel="bookmark">промышленного оборудования в расчетные уравнения вводить соответствующие коэффициенты, учитывающие изменение масштаба процесса и аппарата. Такие коэффициенты получают на основании физического и математического моделирования процессов и аппаратов.

1.3.6. МОДЕЛИРОВАНИЕ И ПОДОБИЕ ПРОЦЕССОВ ПИЩЕВОЙ ТЕХНОЛОГИИ

Виды моделирования. Процессы пищевой технологии характеризуются большим количеством и многообразием параметров, определяющих протекание процессов, значительным количеством внутренних связей между параметрами. Чтобы ограничить такой большой поток информации о процессе, создают его модель, которая отражает отдельные явления изучаемого процесса.

Процесс моделирования включает сравнение модели с явлением (модель считается удовлетворительной, если расхождение невелико) и сравнение нашего ожидания с показаниями модели.

Применяют два вида моделирования: физическое и математическое. При физическом моделировании изучение данного процесса происходит на физической модели. Математическое моделирование предусматривает математическое описание модели изучаемого процесса. При этом физический процесс заменяют алгоритмом, моделирующим его. Затем устанавливают адекватность модели изучаемому процессу.

Методы математического моделирования в сочетании с ЭВМ позволяют при относительно небольших материальных затратах изучать различные варианты аппаратурно-технологического оформления процесса, находить оптимальные.

При математическом моделировании используют также свойство изоморфности дифференциальных уравнений, которое является отражением единства законов природы и позволяет с помощью однотипных дифференциальных уравнений описать различные по своей физической природе явления. Существует аналогия между процессами, различными по своей сущности: электрическими, гидродинамическими, тепловыми и массообменными. Эти процессы описываются однотипными дифференциальными уравнениями: перенос электричества (закон Однотипные дифференциальные уравнения:

перенос электричества (закон Ома) –

i = - (1/R )(dU / dx );

перенос количества энергии (закон трения Ньютона) –

https://pandia.ru/text/78/416/images/image017_56.gif" width="64" height="21">,

где: dU / dx , dv / dx , dc / dx , dt / dx – градиенты соответственно напряжения, скорости, концентрации и температуры; здесь i – сила тока; https://pandia.ru/text/78/416/images/image018_38.jpg" width="226" height="154 src=">

Рис. 1.3.2. Геометрически подобные аппараты

Временное подобие заключается в том, что отношение между интервалами времени завершения аналогичных стадий процесса сохраняется постоянным.

Например, продолжительность нагрева смеси до температуры кипения в первом аппарате составляет , а во втором - τ"1 Продолжительность испарения определенного количества воды составляет соответственно τ"2 и τ"2. Тогда временное подобие процессов будет характеризоваться соотношением

https://pandia.ru/text/78/416/images/image021_50.gif" width="75" height="24 src=">.gif" width="21" height="24 src=">- масштабный коэффициент временного подобия.

Временное подобие процессов называется гомохронностью. В случае, когда Кτ=1, имеет место синхронность процессов, являющаяся частным случаем гомохронности.

Подобие физических величин имеет место при соблюдении геометрического и временного подобия. В этом случае говорят также о подобии полей физических величин.

Полем физической величины называют совокупность мгновенных локальных значений этой величины во всем рабочем объеме, в котором протекает процесс.

Подобие граничных условий заключается в том, что отношение всех значений величин, характеризующих эти условия, для сходственных точек в сходственные моменты времени сохраняется постоянным.

Подобие начальных условий означает, что в начальный момент, когда начинается изучение процесса, соблюдается подобие полей физических величин, характеризующих процесс.

Если все индивидуальные признаки различных процессов, входящих в один класс, подобны, то процессы также подобны, т. е. подобные процессы представляют собой один процесс, протекающий в различных масштабах, так как подобные процессы описываются одинаковыми дифференциальными уравнениями, а индивидуальные признаки процессов (условие однозначности) различаются масштабом.

Определим условия подобия на примере дифференциального уравнения второго закона механики F = m (dv / ), где F -сила; т - масса; v - скорость; τ - время. Приведем уравнение к безразмерному виду. Для этого разделим обе части уравнения на правую часть: Fdτ/(mdv)=1. Тогда для первого из двух рассматриваемых подобных процессов F"dτ"/(m"dv")=l; для второго - F""dτ""/(m""dv"")=l.

Так как процессы подобны, заменим переменные первого процесса через соответствующие переменные второго процесса, умножим их на масштабные коэффициенты:

https://pandia.ru/text/78/416/images/image027_36.gif" width="112" height="45 src=">.

Полученное уравнение и уравнение второго процесса не должны различаться. Однако они различаются комплексом из произведения масштабных коэффициентов. Эти уравнения, очевидно, будут тождественны только тогда, когда этот комплекс будет равен единице:

KFK τ/(KmKv)=1. Это соотношение выражает условие подобия процессов: умножение переменных на постоянные масштабные коэффициенты не меняет самого дифференциального уравнения.

Заменим масштабные коэффициенты соответствующими значениями. Тогда

https://pandia.ru/text/78/416/images/image029_32.gif" width="221" height="41 src=">

Выражение idem означает «одно и то же», т. е. в каждом подобном процессе комплексы переменных величин могут изменяться в пространстве и во времени, но в любых сходственных точках рабочего объема в сходственные моменты времени эти комплексы принимают одно и то же значение. Безразмерные комплексы, составленные по такому типу, называются критериями подобия или числами подобия.

Критерии подобия носят названия по фамилиям выдающихся ученых, известных своими работами в соответствующей области наук. Полученный выше критерий характеризует механическое подобие и называется критерием Ньютона: Ne =Fτ/(mv ).

Получение критериев подобия из дифференциального уравнения сводится к следующим операциям: 1) составляется дифференциальное уравнение процесса; 2) дифференциальное уравнение приводится к безразмерному виду делением обеих частей уравнения на правую или левую часть или делением всех слагаемых на один из членов с учетом его физического смысла; 3) вычеркиваются символы дифференцирования. Символы степеней дифференциалов сохраняются.

При проведении процесса физические величины в различных точках рабочего объема могут иметь различные значения. В этом случае в критериях подобия фигурируют усредненные значения, и тогда пользуются усредненными критериями (числами) подобия.

Кроме критериев подобия, получаемых из дифференциальных уравнений, используются также параметрические критерии, представляющие собой отношение двух одноименных величин и вытекающие непосредственно из условии задачи исследования.

Например, при изучении движения жидкости в канале процесс будет зависеть от соотношения длины трубы и диаметра l / d =Г1 (где Г - геометрический критерий подобия), относительной шероховатости и диаметра трубы Δ/ d =Г2. Линейный размер, входящий в эти критерии подобия, называется определяющим размером.

Все критерии подобия можно разделить на определяющие и определяемые. Определяющие критерии состоят только из физических величин, входящих в условия однозначности. Критерии подобия, в состав которых входит хотя бы одна величина, не входящая в условия однозначности, называются определяемыми.

Для обеспечения подобия необходимо равенство определяющих критериев. Равенство определяющих критериев является достаточным условием подобия.

Не определяющие критерии являются однозначной функцией определяющих критериев.

Первую теорему подобия можно формулировать так: при подобии процессов равны все критерии подобия.

Вторая теорема подобия (теорема Федермана -Бэкингема) утверждает, что результаты опытов следует представлять в виде зависимостей между критериями. Функциональная зависимость между критериями подобия называется критериальным уравнением. Критериальные уравнения описывают всю группу подобных процессов. Это обстоятельство имеет большое практическое, значение и позволяет моделировать промышленный объект на подобной лабораторной модели.

Вид критериального уравнения определяется экспериментальным путем. Во многих случаях эта зависимость представляется в виде степенных функций.

Третья теорема подобия (теорема, мана) гласит, что критериальные уравнения применимы только для подобных процессов.

Явления подобны, если их определяющие критерии численно равны, а следовательно, равны и определяемые критерии.

В заключение можно констатировать, что исследование процессов методом теории подобия состоит из получения математического описания процесса с помощью дифференциальных уравнений и условий однозначности, преобразования этих дифференциальных уравнений (или дифференциального уравнения), как показано выше, в критериальное уравнение и нахождения конкретного вида этого уравнения на основании экспериментального изучения процесса.

1.3.7. РАСЧЕТ ТЕПЛОМАССООБМЕННЫХ АППАРАТОВ С УЧЕТОМ

ФАКТОРА МАСШТАБНОГО ПЕРЕХОДА

При масштабном переходе к промышленным аппаратам увеличение диаметров контактных устройств, с одной стороны, приводит к увеличению длины пути потока, что повышает эффективность массообмена. Однако при этом ухудшается распределение потока по поперечному сечению - изменяется гидродинамика аппарата. Возникает поперечная неравномерность потоков, приводящая к снижению эффективности массопередачи в аппарате.

Снижение эффективности тепломассообменных промышленных аппаратов по сравнению с подобной лабораторной моделью является следствием изменения гидродинамики потоков при прочих равных условиях, приводящего к снижению средней движущей силы процесса.

Движущую силу в промышленном аппарате можно определить по формуле

где: пр, м- движущая сила соответственно в промышленном и модельном аппаратах; Ф N - фактор масштабного перехода.

Движущую силу в реальном аппарате промежуточного типа выразим через движущую силу в аппарате идеального вытеснения или смещения:

https://pandia.ru/text/78/416/images/image033_30.gif" width="25" height="25"> - движущая сила в аппарате идеального вытеснения или смешения.

Подставив значения движущих сил в уравнение тепломассообмена (1.3.1) для модельного и промышленного контактных устройств, получим фактор масштабного перехода, который характеризует влияние гидродинамической обстановки при масштабном переходе на движущую силу процесса:

ФN=Е пр/Е м

где: Епр, Ем - коэффициенты использования движущей силы соответственно в промышленном и модельном аппаратах.

Тогда площадь поверхности (объем) аппарата

Если распределение концентраций (температур) в модели такое же, как в аппарате идеального вытеснения или смешения, т. е. м = и, то Ем = 1 и ФN = Епр. Эффективность модели и промышленного аппарата будет одинаковой, если ФN = 1.

Одним из путей увеличения эффективности аппаратов при масштабном переходе является организация процесса в режиме идеального вытеснения. В этом случае ФN → 1.

Для характеристики полей концентраций (температур) в аппаратах используются гидродинамические модели перемешивания: псевдосекционная, диффузионная, циркуляционная и построенные на их основе комбинированные модели перемешивания и структуры потоков, которые дают возможность провести аналитические исследования и описать (формализовать) процесс.

Одним из требований, предъявляемых к модели, является то, что модель наиболее полно должна отражать характер потоков вещества и энергии при достаточно простом математическом описании.

Математическая модель включает гидродинамические характеристики структуры потоков и описание кинетики рассматриваемого процесса.

Псевдосекционная (ячеечная) модель перемешивания построена из допущений о подобии перемешивания частиц в канале и в каскаде из N последовательно соединенных секций полного перемешивания и описывается системой линейных дифференциальных уравнений первого порядка вида

https://pandia.ru/text/78/416/images/image036_25.gif" width="236" height="48 src=">, (1.3.9)

где: х и - текущие концентрация и время; х н – начальная концентрация; Вымывание" href="/text/category/vimivanie/" rel="bookmark">вымывания введенного в канал индикатора.

На рис. 1.3.3 приведены кривые, построенные по уравнению (1.3.9) при N = 1...5, 7, 10, 20.

Диффузионная модель перемешивания описывает распределение вещества в потоке за счет молекулярной и турбулентной диффузии дифференциальным уравнением одномерной конвективной диффузии, в которое вводится эффективный коэффициент обратного перемешивания:

https://pandia.ru/text/78/416/images/image039_24.gif" width="13" height="15">(dx / dz ).

При идеальном перемешивании концентрация х в любой точке постоянна и дифференциальное уравнение приобретает вид х=xнехр(-τ/τв).

https://pandia.ru/text/78/416/images/image039_24.gif" width="13" height="15 src=">l/Dэ

где: v - скорость потока; l - линейный размер.

Установление связи между этими параметрами имеет важное практическое значение, так как позволяет использовать данные по перемешиванию, полученные на основании диффузионной модели, в математических описаниях массообмена, в основу которых положена псевдосекционная модель перемешивания.

Псевдосекционная модель совпадает с диффузионной с точностью до членов, содержащих производные старше второго порядка.

Связь между критерием Боденштейна В и N определяется из равенства статистических параметров дифференциальных функций распределения xN и хв.

Контрольные вопросы и задания

1. Какому общему закону подчиняются про­цессы пищевой технологии? Как записывается этот закон? 2. В чем заключаются задачи расчета машин и аппаратов пищевых производств? 3. Какие требования предъявляют к машинам и аппаратам? 4. Перечислите конструкционные материа­лы, применяемые в пищевом машиностроении. 5. Какие факторы учитывают при технико-экономическом выборе материалов для пищевого оборудования? 6. Ка­кими показателями характеризуются периодический и непрерывный процессы? 7. Как рассчитывают объем аппарата непрерывного действия? 8. Что такое мате­матическое и физическое моделирование? 9. В каком случае используется теория подобия для моделирования процессов? 10. Как получают критерии подобия? Ка­кие бывают критерии подобия? 11. Что учитывается фактором масштабного пере­хода при расчете тепломассообменных процессов? 12. Какие гидродинамические модели перемешивания используются для описания полей температур или кон­центраций в тепломассообменных аппаратах?