Что является основным источником энергии благодаря которому. Получение энергии из земли

Источники энергии на Земле

Не все источники энергии равноценны. Одни представляют лишь принципиальный интерес, с другими связано существование цивилизации. Одни источники практически неисчерпаемы, другим придет конец в ближайшие столетия, а то и десятилетия.

Уже несколько миллиардов лет посылает свои живительные лучи на Землю главный опекун нашей планетной системы – Солнце. Этот источник энергии можно смело назвать неисчерпаемым. Каждый квадратный метр земной поверхности получает от Солнца энергию средней мощности около 1,5 кВт; за год это составит около 10 миллионов килокалорий энергии – такое количество тепла дают сотни килограммов угля. Сколько же тепла получает от Солнца весь земной шар? Подсчитав площадь Земли и учитывая неравномерное освещение солнечными лучами земной поверхности, получим около 10 14 кВт. Это в 100 тысяч раз больше энергии, которую получают от всех источников энергии на Земле все фабрики, заводы, электростанции, автомобильные и самолетные моторы, короче – в 100 тысяч раз больше мощности энергии, потребляемой всем населением земного шара (порядка миллиарда киловатт).

Однако, несмотря на множество проектов, солнечная энергия используется совершенно незначительно. И правда, подсчет наш дал огромную цифру, – но ведь это количество энергии попадает во все места земной поверхности: и на склоны недоступных гор, и на поверхность океанов, занимающую большую часть земной поверхности, и на пески безлюдных пустынь.

Кроме того, совсем не так уже велико количество энергии, приходящейся на небольшую площадь. А ведь вряд ли целесообразно создавать приемники энергии, простирающиеся на квадратные километры. Наконец, очевидно, что заниматься превращением солнечной энергии в тепло имеет смысл в тех местностях, в которых много солнечных дней.

Интерес к прямому использованию энергии Солнца несколько возрос в последнее время в связи с появившимися возможностями непосредственно превращать солнечную энергию в электрическую. Такая возможность, естественно, весьма привлекательна. Однако до сих пор она реализована в очень незначительной степени.

Сравнительно недавно был обнаружен аккумулятор солнечной энергии у нас над головами – в верхних слоях атмосферы. Оказалось, что кислород на высоте 150–200 км над земной поверхностью вследствие действия солнечного излучения находится в диссоциированном состоянии: его молекулы разбиты на атомы. При объединении этих атомов в молекулы кислорода могло бы выделиться 118 ккал/моль энергии. Каков же общий запас этой энергии? В слое толщиной 50 км на указанной высоте запасено 10 13 ккал – столько, сколько освобождается при полном сгорании нескольких миллионов тонн угля. В СССР такое количество угля добывается за несколько дней. Хотя энергия диссоциированного на больших высотах кислорода непрерывно возобновляется, здесь мы опять сталкиваемся с проблемой малой концентрации: устройство для практического использования этой энергии не так-то легко придумать.

Вернемся к обсуждению источников энергии. Воздушные массы земной атмосферы находятся в непрерывном движении. Циклоны, бури, постоянно дующие пассатные ветры, легкие бризы – многообразно проявление энергии потоков воздуха. Энергию ветра использовали для движения парусных судов и в ветряных мельницах еще в древние века. Полная среднегодовая мощность воздушных потоков для всей Земли равна не много не мало 100 млрд. кВт.

Однако не будем возлагать больших надежд на ветер как источник энергии. Мало того, что источник этот неверен – к скольким несчастьям и разочарованиям приводили ветряные штили в век парусных судов, – он обладает тем же недостатком, что и солнечная энергия: количество энергии, выделяющееся на единицу площади, относительно невелико; лопасти ветряной турбины, если создать такую для производства энергии в заводских масштабах, должны были бы достигнуть практически неосуществимых размеров. Не менее существенным недостатком является непостоянство силы ветра. Поэтому энергия ветра, или, как его поэтично называют, голубого угля, используется лишь в маленьких двигателях – «ветряках». Во время ветра они дают электроэнергию сельскохозяйственным машинам, освещают дома. Если образуется излишек энергии, он запасается в аккумуляторах (так называются хранители электроэнергии). Эти излишки можно использовать в затишье. Конечно, полагаться на ветряк нельзя – он может играть лишь роль вспомогательного двигателя.

Даровым источником энергии является также движущаяся вода – приливная волна океанов, непрерывно наступающая на сушу, и потоки речных вод, текущих к морям и океанам.

Мощность всех рек земного шара измеряется миллиардами киловатт, используется же всего примерно 40 млн. кВт, т.е. пока порядка 1 %. Потенциальная мощность рек СССР достигает 400 млн. кВт, а из них используется пока около 20 млн. кВт.

Если бы мы лишились угля, нефти и других источников энергии и перешли бы только на белый уголь – энергию рек, то при полном использовании этой энергии (предполагая, что построены все возможные гидроэлектростанции на всех реках земного шара) пришлось бы уменьшить потребление энергии на земном шаре. Расход энергии на земном шаре в настоящее время превышает миллиард киловатт – одной лишь гидроэнергии человечеству уже сейчас только-только хватило бы.

Ну, а приливная волна? Ее энергия весьма значительна, хотя примерно в десять раз меньше энергии рек. Увы, эта энергия пока что используется лишь в самой незначительной степени: пульсирующий характер приливов затрудняет ее использование. Однако советские и французские инженеры нашли практические пути к преодолению этой трудности. Теперь приливная электростанция обеспечивает выдачу гарантированной мощности в часы максимального потребления. Во Франции построена и уже работает опытная ПЭС Сен Мало, а в СССР строится станция в Кислой Губе в районе Мурманска. Эта последняя послужит опытом для сооружения проектируемых мощных ПЭС в Лумбовском и Мезенском заливах Белого моря. Во Франции к 1965 г. будет пущена приливная станция мощностью в 240 тыс. кВт.

Вода в океанах на больших глубинах имеет температуру, отличающуюся от температуры поверхностных слоев на 10–20°. Значит, можно построить тепловую машину, нагревателем которой в средних широтах явился бы верхний слой воды, а холодильником – глубинный. КПД такой машины будет 1–2 %. Но это, конечно, тоже очень неконцентрированный источник энергии.

Солнце, воздух и вода – даровые источники энергии*16. Даровые в том смысле, что использование их энергии не влечет за собой уменьшения каких бы то ни было земных ценностей. Работа ветряков не уменьшает количества воздуха на земном шаре, работа гидроэлектростанций не уменьшает глубины рек, не используются запасы земных веществ и при работе солнечных машин.

В этом смысле описанные до сих пор источники энергии обладают большим преимуществом по сравнению с топливом. Топливо сжигается. Использование энергии каменного угля, нефти, дерева – это невозвратимое уничтожение земных ценностей. Было бы очень заманчиво осуществить фотохимический двигатель, т.е. получать энергию при помощи механизма фотосинтеза, который обеспечивает накопление энергии топлива. Зеленый лист любого растения – это завод, который из молекул воды и углекислого газа благодаря энергии солнечных лучей вырабатывает органические вещества с большим запасом энергии в молекулах. Этот процесс в растениях имеет малый КПД (~1 %), но и при этом ежегодно запасаемая растениями энергия равна 2·10 15 кВт·ч, т.е. в сотни раз превышает годовую выработку энергии всеми электростанциями мира. Механизм фотосинтеза до конца еще не разгадан, но нет сомнения, что в будущем удастся не только осуществить фотосинтез в искусственных условиях, но и повысить при этом его КПД. Однако в этой области человек пока не может состязаться с природой и вынужден пользоваться ее дарами, сжигая дрова, нефть, уголь.

Каковы же запасы топлива на земном шаре? К обычному топливу, т.е. такому, которое горит от поднесенного огня, относятся уголь и нефть. Их запасы на земном шаре крайне малы. При современном расходовании нефти ее разведанные запасы придут к концу уже к началу следующего тысячелетия. Запасов каменного угля несколько больше. Количество угля на Земле выражают цифрой в десять тысяч миллиардов тонн. Килограмм угля при сгорании дает 7000 ккал тепла. Таким образом, общие энергетические запасы угля измеряются цифрой порядка 10 20 ккал. Это в тысячи раз больше годового потребления энергии.

Запас энергии на тысячу лет надо признать очень малым. Тысяча лет – это много только по сравнению с длительностью человеческой жизни, а человеческая жизнь – ничтожное мгновение по сравнению с жизнью земного шара и с временем существования цивилизованного мира. Кроме того, потребление энергии на душу населения непрерывно растет. Поэтому, если бы запасы горючего сводились к нефти и углю, то положение дел на Земле с энергетическими запасами следовало бы считать катастрофическим.

В начале сороковых годов нашего века была доказана практическая возможность использования совершенно нового вида горючего, называемого ядерным. Мы располагаем значительными запасами ядерного горючего.

Здесь не место останавливаться на устройстве атома и его сердцевины – атомного ядра, на том, каким образом можно извлечь внутреннюю энергию из атомных ядер. Выделение ядерной энергии может быть осуществлено лишь в значительных масштабах на так называемых атомных электростанциях. Ядерная энергия выделяется в виде тепла, которое используется совершенно так же, как на электростанциях, работающих на каменном угле.

В настоящее время мы можем выделять энергию в промышленных количествах из двух элементов – урана и тория. Особенность ядерного горючего, являющаяся его основным достоинством, – это исключительная концентрированность энергии. Килограмм ядерного горючего отдает энергии в 2,5 миллиона раз больше, чем килограмм каменного угля. Поэтому, несмотря на относительно малую распространенность этих элементов, их запасы на земном шаре в энергетическом выражении довольно значительны. Примерные расчеты показывают, что запасы ядерного горючего существенно больше, чем запасы каменного угля. Однако приобщение к топливу урана и тория не решает принципиальную задачу освобождения человечества от энергетического голода – запасы минералов в земной коре ограничены.

Но уже сейчас можно указать поистине безграничный источник энергии. Речь идет о так называемых термоядерных реакциях. Они возможны лишь при сверхвысоких температурах порядка двадцати миллионов градусов. Эта температура пока что достигается лишь при атомных взрывах.

Сейчас перед исследователями стоит задача получения высоких температур не взрывным путем, и первые попытки достигнуть температуры в миллион градусов увенчались успехом.

Если физики сумеют работать с необходимыми высокими температурами в десятки миллионов градусов, получаемыми не взрывным путем, то управляемая реакция слияния атомных ядер водорода (она и носит название термоядерной) станет возможной. При этой реакции будет выделяться огромная энергия на килограмм горючего. Для того чтобы обеспечить сейчас человечество энергией на один год, достаточно выделить термоядерную энергию путем переработки десятка миллионов тонн воды.

В мировом океане запасено столько термоядерной энергии, что ее хватит для покрытия всех энергетических потребностей человечества в течение времени, превышающего возраст солнечной системы. Вот уж действительно безграничный источник энергии.

Из книги Физическая химия: конспект лекций автора Березовчук А В

2. Химические источники тока ХИТы – устройства, которые применяют для непосредственного преобразования энергии химической реакции в электрическую. ХИТы применяются в различных областях техники. В средствах связи: радио, телефон, телеграф; в электроизмерительной

Из книги Звезды: их рождение, жизнь и смерть [Издание третье, переработанное] автора Шкловский Иосиф Самуилович

Глава 8 Ядерные источники энергии излучения звезд В § 3 мы уже говорили о том, что источниками энергии Солнца и звезд, обеспечивающими их светимость в течение гигантских «космогонических» промежутков времени, исчисляемых для звезд не слишком большой массы миллиардами

Из книги Пять нерешенных проблем науки автора Уиггинс Артур

Глава 16 Остатки вспышек сверхновых - источники рентгеновского и радиоизлучения В результате взрыва звезды, который наблюдается как явление сверхновой, вокруг нее образуется туманность, расширяющаяся с огромной скоростью: как правило, порядка 10 000 км/с. Большая

Из книги Астрономия древнего Египта автора Куртик Геннадий Евсеевич

Глава 21 Пульсары как источники радиоизлучения Пожалуй, труднее всего для пульсаров определяются две основные характеристики всякого «нормального» источника радиоизлучения - поток и спектр. Эти трудности связаны прежде всего с самой природой пульсаров. Дело в том,

Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

Источники для углубленного изучения Источники общего характера КнигиAnton Ted. Bold Science; Seven Scientists Who Are Changing Our World. N.Y.Kaku Michio. Hyperspace. London: Oxford University Press, 1994.Kaku Michio. Visions. N.Y.: Anchor Books, 1997.Kuhn Robert L. Closer to Truth Challenging Current Belief. N.Y.: McGraw-Hill 2000.Периодические изданияDiscoverScienceScience WeekScientific American (или

Из книги Источники питания и зарядные устройства автора

Источники общего характера КнигиAnton Ted. Bold Science; Seven Scientists Who Are Changing Our World. N.Y.Kaku Michio. Hyperspace. London: Oxford University Press, 1994.Kaku Michio. Visions. N.Y.: Anchor Books, 1997.Kuhn Robert L. Closer to Truth Challenging Current Belief. N.Y.: McGraw-Hill 2000.Периодические изданияDiscoverScienceScience WeekScientific American (или www.sciam. com)Узел Всемирной Паутины

Из книги О чем рассказывает свет автора Суворов Сергей Георгиевич

Источники и публикации Наиболее ранние упоминания названий светил встречаются в «Текстах пирамид», датируемых XXV-XXIII в. до н. э., - религиозном памятнике, во многом еще до конца не понятом (Faulkner, 1969; Mercer, 1952). Сами пирамиды представляют также интерес с точки зрения истории

Из книги Кто изобрел современную физику? От маятника Галилея до квантовой гравитации автора Горелик Геннадий Ефимович

ИСТОЧНИК ЧЕЛОВЕЧЕСКОЙ ЭНЕРГИИ - ТРИ ПУТИ ПОЛУЧЕНИЯ ЭНЕРГИИ ОТ СОЛНЦА Во-первых, позвольте спросить: Откуда появляется движущая энергия? Что является источником, который все движет? Мы видим океан, который вздымается и опадает, текущие реки, ветер, дождь, град и снег,

Из книги Астероидно-кометная опасность: вчера, сегодня, завтра автора Шустов Борис Михайлович

Из книги Гравитация [От хрустальных сфер до кротовых нор] автора Петров Александр Николаевич

Два круговорота вещества и энергии на Земле Достигнув Земли, солнечная энергия способствует осуществлению на ней ряда процессов, без которых была бы невозможна органическая жизнь в ее высокой стадии. Особенно замечательны два круговорота веществ и энергии на Земле,

Из книги автора

Мощные источники энергии в ядрах радиогалактик Не все явления, наблюдаемые астрофизиками, можно объяснить посредством ядерной реакции превращения водорода в гелий. Уже около полусотни лет ученые изучают космические лучи, приходящие к нам на Землю из далеких глубин

Из книги автора

Из книги автора

Основные источники Физики Архимед. Сочинения. М.: Физматгиз, 1962.Бор Н. Избранные научные труды: В 2. М.: Наука, 1970–1971.Bohr N. Collected Works. Vol. 9 Nuclear Physics, 1929–1952. Amsterdam: North-Holland, 1986.Бронштейн М.П. Современное состояние релятивистской космологии // Успехи физических наук. 1931. № 11. С.

Из книги автора

4.5. Источники околоземных комет Из вышесказанного ясно, что в околоземном пространстве наблюдаются кометы, принадлежащие различным динамическим классам. Рассмотрим, что же известно в данный момент об источниках комет с такими разными орбитальными параметрами и о тех

Из книги автора

Источники гравитационного излучения – Возьмем две звезды, разгоним почти до скорости света и столкнем. Что произойдет? – Нехилый коллайдер получится… Из форума Слабость гравитационного излучения оставляет мало шансов для его регистрации. Где же искать подходящие

Из книги автора

2. Материальные источники В тексте обсуждается и утверждается, что искривление пространства-времени – это результат воздействия материальных источников. Что они собой представляют и как представлены формально? Эти источники являются материей в самом общем понимании.

У каждой стихии есть свое энергетическое поле: у воздуха, воды, огня и, конечно, земли. О последней и пойдет речь. Земля всегда ассоциируется с плодородием, пищей, торжеством жизни. Именно на ней мы выращиваем различные культуры, строим дома. Она, в конце концов, обладает силой притяжения!

Поэтому ее энергия настолько сильная и мощная, что способная зарядить всех людей. Энергия земли дает нам возможность ощутить связь со своими предками, получить их поддержку и помощь.

Энергия из земли исходит постоянно. Но, разумеется, не вся она доходит до нас. Тем более, если учесть, что в последнее время мы стали мало ходить пешком, мало работать на улице. Вспомните, как жили наши предки! Вся их жизнь была тесно связана с сельскохозяйственными, земледельческими работами. Они постоянно находились на природе. Поэтому и были всегда такими здоровыми, сильными и выносливыми. Их питала сама земля!

Получение энергии из земли возможно разными способами:

Энергия от земли может находиться в двух видах. Первая – это свободная энергия из земли. Именно ее мы и получаем, когда ходим по земле, работаем в огороде. Вторая – это потенциальная энергия земли. Она и обуславливает существующее и давно доказанное притяжение (гравитацию). Без нее жизнь на земле вряд ли была бы такой, каковой она является. И эту потенциальную энергию земля не может отдать человеку и другим объектам окружающей природы. В противном случае начнется хаос.

А как же происходит использование энергии земли?

Этот процесс довольно прост и понятен. Во время нашего контакта с землей ее энергия поступает в наш организм через специальные энергетические потоки. Как известно, через тело человека проходят два главных продольных канала: восходящий и нисходящий. Через последний поступает энергия Солнца, а через первый – энергия земли. Затем она распространяется по всему организму по более мелким каналам. Вся эта сеть подобна капиллярной, нервной. Все устроено так, что энергия попадает в каждый, даже самый отдаленный «кусочек» тела. Энергии земли идут на питание, развитие каждой клеточки. Таким образом, организм оздоравливается, обновляются все его структуры на молекулярном уровне.

Однако используется энергия и земли и в другом русле – в духовном. Она дает нам гармонию, спокойствие. Делает нас более добрыми, более отзывчивыми, более милосердными. У женщин эта энергия пробуждает материнский инстинкт. Ведь земля – кормилица, как и мать для своего дитя.

Как отражается на человеческой жизни недостаток энергии земли?

Конечно, он характеризуется только отрицательными признаками:

  • Подавленность настроения.
  • Человек перестает радоваться жизни и получать удовольствие от нее.
  • Снижение полового влечения, получения удовольствия в сексуальной сфере.
  • Материальные проблемы.
  • Неудачи в реализации планов, желаний.

В целом человек теряет свою стабильность, устойчивость во многих сферах своей жизнедеятельности. Он становится раздражительным, неуверенным в себе, пассивным, бессильным даже перед небольшими трудностями.

И помните, что все мы – дети земли. И она всегда поможет Вам, даст Вам энергию. Просто постарайтесь больше времени «общаться» с ней. Земля сродни матери: чем больше Вы с ней, тем сильнее Вы становитесь. Вы начинаете чувствовать огромную поддержку, заботу и спокойствие.

Электричество - из почвы.

Получение бесплатного электричества в домашних условиях!

Для существования и развития человеческого общества необходимы . Решающая роль в развитии мировой энергетики принадлежит ресурсам энергии, выяснению вопроса о том, какими геологическими и разведанными запасами различных источников энергии и, в частности, нефти и газа, располагает человечество, каков энергетический потенциал нашей планеты.

По степени долговечности источники энергии делятся на возобновляемые и не возобновляемые. К возобновляемым или неисчерпаемым источникам энергии относятся: солнечная энергия, энергия ветра, энергия приливов и отливов, гидроэнергия, геотермальная энергия.

Не возобновляемые источники энергии: атомная энергия и энергия каустобиолитов. Каустобиолиты - это горючие полезные ископаемые (каусто - горючий, биос - органический, литос - камень). К ним относятся каменный уголь, нефть, природные углеводородные газы, сланцы, торф.

Мировые источники энергии: солнечная энергия

Ежедневно на Землю поступает 1,5⋅10*22 Дж солнечной энергии . Около 30 % солнечных лучей отражается облаками и земной поверхностью, но большая часть проникает через атмосферу. Нагревая атмосферу, океаны и сушу, солнечное тепло вызывает ветры, дожди, снегопады и океанские течения.

Однако вся энергия вновь излучается в холодный космос, сохраняя земную поверхность в тепловом равновесии.

Небольшая часть солнечной энергии аккумулируется в озёрах и реках, другая же часть - в живых растениях и животных. Солнечная энергия обладает такими свойствами, которые не встречаются ни у одного другого источника: она возобновляема, экологически чиста, управляема, по величине в тысячи раз превосходит всю ту энергию, которая используется в настоящее время.

Солнечная энергия используется для обогрева теплиц, домов, аккумулируется в солнечных батареях, которые преобразуют солнечную радиацию в электроэнергию, на космических кораблях применяются солнечные панели или фотоэлементы, обеспечивающие космонавтов электроэнергией при работе в открытом космосе. Недостаток этой энергии в том, что солнечные лучи рассеиваются земной поверхностью и требуется большая поверхность, собирающая солнечный свет.

Энергия ветра

Примерно 46 % поступающей солнечной энергии поглощается океаном, сушей и атмосферой. Эта энергия вызывает ветры, волны и океанские течения, нагревает моря и порождает колебания погоды. Оценка энергии ветра в глобальном масштабе – порядка 10*15 Вт, однако большая часть энергии сосредоточена в ветрах, дующих на заоблачных высотах, и, следовательно, недоступна для использования на поверхности суши. Устойчивые поверхностные ветры обладают мощностью порядка 10*12 Вт и могут быть использованы ветряными установками и в перевозках по морю.

В последние годы производство ветровой энергии в мире ежегодно увеличивается на 28 %. Предполагается, что к 2020 году на эту энергию будет приходиться до 10 % производимого в мире электричества.

В 2005 году принят закон Азербайджанской Республики о применении энергии Солнца и ветра, которых достаточно в стране.

Энергия приливов и отливов

Приливы являются результатом гравитационного притяжения Луны и Солнца, причём воздействие Луны значительно больше. Сила приливов является выражением силы вращения планеты. Высота приливов не везде одинакова.

Она редко превышает один метр при больших глубинах в океане, а над континентальным шельфом может достигать до 20 метров. Мощность приливов оценивается в 0,85⋅10*20 Дж. Во Франции (река Ранс) и в России (Кислая Губа) станции уже генерируют электричество из приливных волн. В утилизации приливов и отливов существует много проблем. Для эффективной работы станций требуется высота приливной волны более 5 м и наличие перекрытых лёгкими плотинами заливов - эстуариев. Но почти везде прибрежные приливы имеют высоту около 2 м и только, примерно, 30 мест на Земле удовлетворяют указанным требованиям. Наиболее важными из них являются: два смежных залива - Фанди (Канада) и Пассамукуодди (США); французское побережье вдоль Ла-Манша, где станция на Ранс успешно действует уже много лет, в Ирландском море эстуарии рек Англии, Белое море (Россия) и побережье Кимберли (Австралия). Энергия приливов может иметь достаточно большое значение в будущем, потому что является одной из немногих энергетических систем, которые действуют без серьёзного ущерба для окружающей среды.

Гидроэнергия

Примерно 23 % солнечной радиации уходит на испарение воды, выпадающей затем в виде дождя и снега.

Энергия воды представляет собой возобновляемые ресурсы. Примитивным образом сила воды использовалась за тысячи лет до двадцатого столетия, когда началось широкомасштабное перекрытие рек для производства электроэнергии. Из всех возобновляемых энергетических ресурсов наиболее интенсивно используется сила воды. Но неблагоприятным обстоятельством является то, что плотины имеют конечный и, скорее всего, короткий срок жизни. Движущийся поток воды переносит груз тонких глинистых частиц в виде суспензии; как только поток перекрывается, и скорость воды падает, этот материал отлагается, и резервуар может быть целиком заполнен ими за 50-200 лет.

Наибольший неосвоенный потенциал этой энергии может быть использован там, где имеются большие запасы энергии воды.

Геотермальная энергия

При погружении вглубь земли на 1 км температура увеличивается от 15 до 75 С. В ядре земли температура, вероятно, превышает 5000 C. В среднем из недр к поверхности поступает 6,3⋅10*6 Дж энергии. Кроме того, геотермальная энергия связана с распадом таких радиоактивных элементов как U

238 , U 235 , Th 232 , K 40, которые в рассеянном виде распространены в недрах повсеместно. При этом подземные воды нагреваются и выходят на поверхность в виде пара и горячей воды (гейзеры). Геотермальные горячие воды используются в Исландии, Японии, Италии, Индонезии, на Филиппинах, России, Америке и Новой Зелландии для обогрева домов, плавательных бассейнов, теплиц. Но они имеют всё же малое значение по сравнению с производством электроэнергии.

Атомная энергия

Атомную энергию можно получить с помощью двух процессов. Первый - слияние или синтез лёгких элементов, таких как водород и литий, при котором образуются более тяжёлые элементы. Это процессы, идущие на Солнце и в водородной бомбе, но они трудно контролируемы; возможно, в будущем синтез таких элементов может стать главным источником энергии. Второй процесс - деление (распад) тяжёлых элементов, таких как уран и торий. Это процесс, идущий в атомной бомбе. Поскольку эта реакция может быть контролируема, деление тяжёлых элементов уже используется для генерации электричества на атомных электростанциях. Природной способностью к распаду обладает только уран-235, который составляет всего 0,7 % общего количества природных атомов урана. Цепная реакция урана-235 впервые была осуществлена профессором Энрико Ферми 2 декабря 1942 года в одном из наиболее важных экспериментов в истории Земли. Стоимость выделения атомов урана-235 высока. Однако при распаде одного атома урана-235 высвобождается 3,2⋅10*11 Дж энергии.

Поскольку в 1 г атома урана-235 содержится около 2,56⋅10-21 атомов, то при распаде 1 г урана образуется около 8,19⋅10*10 Дж, что эквивалентно энергии, получаемой при сгорании 2,7 т угля. В настоящее время на уране-235 работает около 300 атомных электростанций. Первое место по использованию атомной энергии занимает США (около 50 %), затем Европа (30 %) и Япония (12 %). При использовании атомной энергии остро стоит проблема безопасности, а также проблема утилизации радиоактивных отходов.

Горючие ископаемые

В настоящее время используются три вида горючих ископаемых: каменный уголь, нефть и природный газ. На их долю приходится около 90 % мировой энергии. Уголь. Мировые запасы всех видов углей оцениваются в 13800 млрд. т., а дополнительные потенциальные ресурсы - в 6650 млрд. т. География распределения такова: примерно 43 % углей мира залегают в России, 29 % - в Северной Америке, 14,5 % - в странах Азии, главным образом в Китае, и 5,5 % - в Европе. На остальной мир приходится 8 %.

Хотя уголь во всём мире не является ведущим видом топлива, в некоторых странах он всё ещё преобладает, и, возможно, в будущем трудности в снабжении нефтью и газом приведут к возрастающему использованию угля. При использовании угля возникает много трудностей. Он содержит от 0,2 % до 7 % серы, присутствующей в основном в виде пирита FeS2, сульфата закисного железа FeSO4⋅7H2O, гипса CaSO4⋅2H2 O и некоторых органических соединений.

Когда уголь сгорает, выделяется окисленная сера, выбросы которой в атмосферу вызывают кислотные дожди и смог. Другая проблема - это сама добыча угля. Подземные методы разработки трудны и даже опасны. Разработка открытым методом более эффективна и менее опасна, но вызывает нарушение поверхностного слоя на большой площади. В современном мире основное применение в качестве источников энергии имеют нефть и природные углеводородные газы.

Люди используют различные виды энергии для всего, от собственных движений до отправки космонавтов в космос.

Существует два типа энергии:

  • способность совершить (потенциальная)
  • собственно работа (кинетическая)

Поставляется в различных формах:

  • тепла (тепловая)
  • свет (лучистая)
  • движение (кинетическая)
  • электрическая
  • химическая
  • ядерная энергия
  • гравитационная

Например пища, которую человек ест содержит химическую и тело человека хранит её пока он или она израсходует как кинетическую во время работы или жизни.

Классификация видов энергии

Люди используют ресурсы разных видов: электричество в своих домах, добываемое путем сжигания угля, ядерной реакции или ГЭС на реке. Таким образом, уголь, ядерная и гидро называются источником. Когда люди заполняют топливный бак бензином источником может быть нефть или даже выращивание и переработка зерна.

Источники энергии делятся на две группы :

  • Возобновляемые
  • Невозобновляемые

Возобновляемые и невозобновляемые источники можно использовать в качестве первичных для получения пользы, такого как тепло или использовать для производства вторичных энергетических источников, таких, как электричество.

Когда люди используют электричество в своих домах, электроэнергия вероятно создается сжиганием угля или природного газа, ядерной реакции или ГЭС на реке, или из нескольких источников. Люди используют для топлива своих автомобилей сырую нефть (невозобновляемая), но могут и биотопливо (возобновляемая) как этанол, который производится из переработанной кукурузы

Возобновляемые

Есть пять основных возобновляемых источников энергии:

  • Солнечная
  • Геотермальное тепло внутри Земли
  • Энергия ветра
  • Биомасса из растений
  • Гидроэнергетика из проточной воды

Биомасса, которая включает древесину, биотопливо и отходы биомассы, является крупнейшим источником возобновляемой энергии, на которую приходится около половины всех возобновляемых и около 5% от общего объема потребления.

Невозобновляемые

Большая часть ресурсов, потребляемых в настоящее время из невозобновляемых источников:

  • Нефтепродукты
  • Углеводородный сжиженный газ
  • Природный газ
  • Уголь
  • Ядерная энергия

На невозобновляемые виды энергии приходится около 90% всех используемых ресурсов.

Изменяется ли потребление топлива с течением времени

Источники потребляемой энергии с течением времени меняются, но изменения происходят медленно. Например, уголь когда-то широко использовался в качестве топлива для отопления домов и коммерческих зданий, однако конкретное использование угля для этих целей сократилось за последние полвека.

Хотя доля возобновляемого топлива от общего потребления первичной энергии еще относительно невелика, его использование растет во всех отраслях. Кроме того, использование природного газа в электроэнергетике возросло в последние годы из-за низких цен на природный газ, в то время как использование угля в этой системе сократилось.

Основные источники энергии на службе человеку

Ископаемые виды топлива, такие как нефть, газ и уголь являются основными и чрезвычайно полезными для экономического развития. Однако все эти виды топлива имеют свои недостатки. Уголь является неэффективным. Нефть существует в ограниченных запасах.

Газ, хотя легко перемещать с места на место, может быть опасным, при его утечке. Включение угля, газа, нефти и других видов топлива в выработку электричества есть способ, чтобы сделать их гораздо более универсальными и полезными.

Электрическую энергии обычно получают на электростанциях при сжигании топлива. Около 40 процентов электроэнергии, в России производится из угля. Внутри электростанции, уголь сжигается в огромной печи, чтобы освободить энергию в виде тепла.

Тепло используется для кипячения воды и производства пара, который в свою очередь вращает винто-подобный механизм называемый турбиной. Турбины соединены с генератором, который вырабатывает электричество.

Самое замечательное в электричестве, то что этот вид энергии универсален. Практически любой вид топлива может быть превращен в электричество .

После электроэнергия полученная в силовой установкой, легко передается от одного места в другое надземные или подземными кабельными линиями. Внутри дома, завода и офиса, электричество снова преобразуется в другие виды энергии с помощью широкого спектра техники. Если у вас есть электрическая печь или тостер, то они преобразует электроэнергию, поставляемую с электростанции обратно в тепловую энергию для приготовления пищи.

Лампы в вашем доме преобразуют электрическую энергию в световую. По данным Министерства энергетики России, мировое потребление электроэнергии, вырастет на 71 процент в период между 2003 и 2030 гг. Около 80 процентов энергии которую мы используем сегодня, происходит от ископаемых видов топлива, но это не может продолжаться долго. Ископаемое топливо закончится рано или поздно.

К счастью, у нас есть альтернативы, основным источникам энергии. Мы можем сделать электричество из энергии ветра, или солнечных батарей.

Мы можем сжигать мусор для производства тепла, которое будет стимулировать электростанцию. Мы можем выращивать так называемые "энергетические культуры" (биомассы), чтобы сжечь в наших электростанциях вместо ископаемого топлива.

И мы можем использовать огромные запасы тепла в заключенные внутри Земли, известные как геотермальная энергия. Вместе, эти источники энергии, известны как возобновляемые источники энергии, потому что они будут длиться вечно (или, по крайней мере до тех пор, пока будет светить Солнце), не иссякая.

Если бы мы могли покрыть только один процент от пустыни Сахара солнечными панелями (площадь чуть меньше, чем Соединенные Штаты Америки), мы могли бы сделать более чем достаточно электроэнергии для всей нашей планеты. Мы также должны быть умнее в том, как мы используем энергию. Это называется энергоэффективность (экономия энергии).

Сегодня большинство электроэнергии поступает из далеко расположенных электростанций, и передается по кабельным линиям. При передачи электроэнергии из одного места в другое теряется примерно две трети энергии. Другими словами, если вы сжигаете три тонны угля на электростанции, вы тратите две тонны на то, что-бы доставить электроэнергию потребителям. Вот почему здания в будущем, необходимо, делать с собственным подключением к электросети, например, солнечные батареи или небольшие ветряные турбины на крышах.

Последовательное развитие возобновляемых источников энергии и технологий будет означать снижение доли централизованной крупной энергетики. Для общества это будет означать независимость от крупных энергетических компаний, а также повышение надежности электроснабжения.

Общий вывод очевиден. Научно-технический прогресс, появление новых технологий и материалов постоянно повышают роль возобновляемых источников энергии, которые уже замещают традиционные, основные источники энергии в значительном объеме. Общественное мнение «сдвигается» в сторону «распределенной энергетики», где основное место займут возобновляемые источники энергии.

Все это приводит к более глубокому изучению и использованию нетрадиционных возобновляемых источников энергии. Основное преимущество возобновляемых источников энергии их неисчерпаемость и экологическая чистота. Их использование не изменяет энергетический баланс планеты.

Ещё больше интересных статей

Menu ГЛАВНАЯ НАЙТИ МАСТЕРА КАЛЬКУЛЯТОР НОВОСТИ БИЗНЕСА — земельные участки — недвижимость — покупка недвижимости — аренда продажа ОХРАНА ТРУДА и ТБ СТРОИТЕЛЬСТВО — фундаменты — гидроизоляция — стены и фасад — кровля и мансарда — теплоизоляция — окна и двери — полы и напольные покрытия — отделочные работы — инженерные системы — строительные материалы — вентиляция и кондиционирование — потолок — системы отопления — дома и коттеджи — конструкция окон — конструкция дверей — ремонтные работы — системы водоснабжения — проектирование — технологии строительства БАНИ САУНЫ — особенности русской бани — строительство и материалы ПЕЧИ КАМИНЫ — печи, котлы, камины АРХИТЕКТУРА — архитектура древности — современная архитектура — дизайн интерьера — ландшафтный дизайн — декорирование — мебель и обстановка — стили интерьера ТЕХНОЛОГИИ — научно-технический прогресс — библиотека строителя — инженерное оборудование — станки — оборудование и инструмент — услуги — строительная техника — энергосбережение О ПРОЕКТЕ — Пользовательское соглашение — Политика конфиденциальности — Использование cookie КАРТА САЙТА