«Отношение. Основное свойство отношения»

Свойства отношений:


1) рефлексивность;


2)симметричность;


3)транзитивность.


4)связанность.


Отношение R на множестве Х называется рефлексивным, если о каждом элементе множества Х можно сказать, что он находится в отношении R с самим собой: х Rх. Если отношение рефлексивно, то в каждой вершине графа имеется петля. И обратно, граф, каждая вершина которого содержит петлю, представляет собой граф рефлексивного отношения.


Примерами рефлексивных отношений являются и отношение «кратно» на множестве натуральных чисел (каждое число кратно самому себе), и отношение подобия треугольников (каждый треугольник подобен самому себе), и отношение «равенства» (каждое число равно самому себе) и др.


Существуют отношения, не обладающие свойством рефлексивности, например, отношение перпендикулярности отрезков: ab, ba (нет ни одного отрезка, о котором можно сказать, что он перпендикулярен самому себе). Поэтому на графе данного отношения нет ни одной петли.


Не обладает свойством рефлексивности и отношение «длиннее» для отрезков, «больше на 2» для натуральных чисел и др.


Отношение R на множестве Х называется антирефлексивным , если для любого элемента из множества Х всегда ложно х Rх: .


Существуют отношения, не являющиеся ни рефлексивными, ни антирефлексивными. Примером такого отношения может служить отношение «точка х симметрична точке у относительно прямой l », заданное на множестве точек плоскости. Действительно, все точки прямой l симметричны сами себе, а точки, не лежащие на прямой l, себе не симметричны.


Отношение R на множестве Х называется симметричным , если выполняется условие: из того, что элемент х находится в отношении с элементом y , следует, что и элемент y находится в отношении R с элементом х: xRyyRx .


Граф симметричного отношения обладает следующей особенностью: вместе с каждой стрелкой, идущей от х к y , граф содержит стрелку, идущую от y к х (рис. 35).


Примерами симметричных отношений могут быть следующие: отношение «параллельности» отрезков, отношение «перпендикулярности» отрезков, отношение «равенства» отрезков, отношение подобия треугольников, отношение «равенства» дробей и др.


Существуют отношения, которые не обладают свойством симметричности.


Действительно, если отрезок х длиннее отрезка у , то отрезок у не может быть длиннее отрезка х . Граф этого отношения обладает особенностью: стрелка, соединяющая вершины, направлена только в одну сторону.


Отношение R называют антисимметричным , если для любых элементов х и y из истинности xRy следует ложность yRx: : xRyyRx.


Кроме отношения «длиннее» на множестве отрезков существуют и другие антисимметричные отношения. Например, отношение «больше» для чисел (если х больше у , то у не может быть больше х ), отношение «больше на» и др.


Существуют отношения, которые не обладают ни свойством симметричности, ни свойством антисимметричности.


Отношение R на множестве Х называют транзитивным, если из того, что элемент х находится в отношении R с элементом y, а элемент y находится в отношении R с элементом z , следует, что элемент х находится в отношении R с элементом z : xRy и yRz xRz.


Граф транзитивного отношения с каждой парой стрелок, идущих от х к y и от y к z , содержит стрелку, идущую от х к z.


Свойством транзитивности обладает и отношение «длиннее» на множестве отрезков: если отрезок а длиннее отрезка b , отрезок b длиннее отрезка с , то отрезок а длиннее отрезка с. Отношение «равенства» на множестве отрезков также обладает свойством транзитивности: (а= b, b=с)(а=с).


Существуют отношения, которые не обладают свойством транзитивности. Таким отношением является, например, отношение перпендикулярности: если отрезок а перпендикулярен отрезку b , а отрезок b перпендикулярен отрезку с , то отрезки а и с не перпендикулярны!


Существует еще одно свойство отношений, которое называется свойством связанности, а отношение, обладающее им, называют связанным.


Отношение R на множестве Х называется связанным, если для любых элементов х и y из данного множества выполняется условие: если х и y различны, то либо х находится в отношении R с элементом y , либо элемент y находится в отношении R с элементом х . С помощью символов это можно записать так: xy xRy или yRx.


Например, свойством связанности обладает отношение «больше» для натуральных чисел: для любых различных чисел х и y можно утверждать, либо x>y , либо y>x.


На графе связанного отношения любые две вершины соединены стрелкой. Справедливо и обратное утверждение.


Существуют отношения, которые не обладают свойством связанности. Таким отношением, например, является отношение делимости на множестве натуральных чисел: можно назвать такие числа х и y , что ни число х не является делителем числа y , ни число y не является делителем числа х (числа 17 и 11 , 3 и 10 и т.д.).


Рассмотрим несколько примеров. На множестве Х={1, 2, 4, 8, 12} задано отношение «число х кратно числу y ». Построим граф данного отношения и сформулируем его свойства.


Про отношение равенства дробей говорят, оно является отношением эквивалентности.


Отношение R на множестве Х называется отношением эквивалентности, если оно одновременно обладает свойством рефлексивности, симметричности и транзитивности.


Примерами отношений эквивалентности могут служить: отношения равенства геометрических фигур, отношение параллельности прямых (при условии, что совпадающие прямые считаются параллельными).


В рассмотренном выше отношении «равенства дробей», множество Х разбилось на три подмножества: {; ; }, {; }, {}. Эти подмножества не пересекаются, а их объединение совпадает с множеством Х , т.е. имеем разбиение множества на классы.


Итак, если на множестве Х задано отношение эквивалентности, то оно порождает разбиение этого множества на попарно непересекающиеся подмножества - классы эквивалентности.


Так, мы установили, что отношению равенства на множестве
Х ={ ;; ; ; ; } соответствует разбиение этого множества на классы эквивалентности, каждый из которых состоит из равных между собой дробей.


Принцип разбиения множества на классы при помощи некоторого отношения эквивалентности является важным принципом математики. Почему?


Во-первых, эквивалентный - это значит равносильный, взаимозаменяемый. Поэтому элементы одного класса эквивалентности взаимозаменяемы. Так, дроби, оказавшиеся в одном классе эквивалентности {; ; }, неразличимы с точки зрения отношения равенства, и дробь может быть заменена другой, например . И эта замена не изменит результата вычислений.


Во-вторых, поскольку в классе эквивалентности оказываются элементы, неразличимые с точки зрения некоторого отношения, то считают, что класс эквивалентности определяется любым своим представителем, т.е. произвольным элементом класса. Так, любой класс равных дробей можно задать, указав любую дробь, принадлежащую этому классу. класса эквивалентности по одному представителю позволяет вместо всех элементов множества изучать совокупность представителей из классов эквивалентности. Например, отношение эквивалентности «иметь одинаковое число вершин», заданное на множестве многоугольников, порождает разбиение этого множества на классы треугольников, четырехугольников, пятиугольников и т.д. свойства, присущие некоторому классу, рассматриваются на одном его представителе.


В-третьих, разбиение множества на классы с помощью отношения эквивалентности используется для введения новых понятий. Например, понятие «пучок прямых» можно определить как то общее, что имеют параллельные прямые между собой.


Другим важным видом отношений являются отношения порядка. Рассмотрим задачу.На множестве Х ={3, 4, 5, 6, 7, 8, 9, 10 } задано отношение «иметь один и тот же остаток при делении на 3 ». Это отношение порождает разбиение множества Х на классы: в один попадут все числа, при делении которых на 3 получается в остатке 0 (это числа 3, 6, 9 ). Во второй - числа, при делении которых на 3 в остатке получается 1 (это числа 4, 7, 10 ). В третий попадут все числа, при делении которых на 3 в остатке получается 2 (это числа 5, 8 ). Действительно, полученные множества не пересекаются и их объединение совпадает с множеством Х . Следовательно, отношение «иметь один и тот же остаток при делении на 3 », заданное на множестве Х , является отношением эквивалентности.


Возьмем еще пример: множество учащихся класса можно упорядочить по росту или возрасту. Заметим, что это отношение обладает свойствами антисимметричности и транзитивности. Или всем известен порядок следования букв в алфавите. Его обеспечивает отношение «следует».


Отношение R на множестве Х называется отношением строгого порядка , если оно одновременно обладает свойствами антисимметричности и транзитивности. Например, отношение «х< y ».


Если же отношение обладает свойствами рефлексивности, антисимметричности и транзитивности, то такое оно будет являться отношением нестрогого порядка . Например, отношение «х y ».


Примерами отношения порядка могут служить: отношение «меньше» на множестве натуральных чисел, отношение «короче» на множестве отрезков. Если отношение порядка обладает еще и свойством связанности, то говорят, что оно является отношением линейного порядка . Например, отношение «меньше» на множестве натуральных чисел.


Множество Х называется упорядоченным, если на нем задано отношение порядка.


Например, множество Х= {2, 8, 12, 32 } можно упорядочить при помощи отношения «меньше» (рис. 41), а можно это сделать при помощи отношения «кратно» (рис. 42). Но, являясь отношением порядка, отношения «меньше» и «кратно» упорядочивают множество натуральных чисел по-разному. Отношение «меньше» позволяет сравнивать два любых числа из множества Х , а отношение «кратно» таким свойством не обладает. Так, пара чисел 8 и 12 отношением «кратно» не связана: нельзя сказать, что 8 кратно 12 либо 12 кратно 8.


Не следует думать, что все отношения делятся на отношения эквивалентности и отношения порядка. Существует огромное число отношений, не являющихся ни отношениями эквивалентности, ни отношениями порядка.

Остановимся теперь на некоторых важных свойствах отношений, которые следуют из приведенных ранее определений:

Отсутствие кортежей-дубликатов

То свойство, что отношения не содержат кортежей-дубликатов, следует из определения отношения как множества кортежей. В классической теории множеств по определению каждое множество состоит из различных элементов.

Поскольку отношение – это множество, а множества по определению не содержат совпадающих элементов, то никакие два кортежа отношения не могут быть дубликатами друг друга в любой произвольно-заданный момент времени.

Потенциальные ключи

Пусть R – отношение с атрибутами A1, A2, ..., An. Говорят, что множество атрибутов K=(Ai, Aj, ..., Ak) отношения R является возможным (потенциальным) ключом R тогда и только тогда, когда удовлетворяются два независимых от времени условия:

1. Уникальность: в произвольный заданный момент времени никакие два различных кортежа R не имеют одного и того же значения для Ai, Aj, ..., Ak.

2. Минимальность: ни один из атрибутов Ai, Aj, ..., Ak не может быть исключен из K без нарушения уникальности. Т.е. в набор атрибутов первичного ключа не должны входить такие атрибуты, которые можно отбросить без ущерба для основного свойства - однозначно определять кортеж.

Каждое отношение обладает хотя бы одним возможным ключом, поскольку, по меньшей мере, комбинация всех его атрибутов удовлетворяет условию уникальности. Один из возможных ключей (выбранный произвольным образом) принимается за его первичный ключ. Остальные возможные ключи, если они есть, называются альтернативными ключами.

Понятие первичного ключа является исключительно важным в связи с понятием целостности баз данных.



Забегая вперед, заметим, что во многих практических реализациях РСУБД допускается нарушение свойства уникальности кортежей для промежуточных отношений, порождаемых неявно при выполнении запросов. Такие отношения являются не множествами, а мультимножествами, что в ряде случаев позволяет добиться определенных преимуществ, но иногда приводит к серьезным проблемам.

Отсутствие упорядоченности кортежей

Свойство отсутствия упорядоченности кортежей отношения также является следствием определения отношения-экземпляра как множества кортежей. Отсутствие требования к поддержанию порядка на множестве кортежей отношения дает дополнительную гибкость СУБД при хранении баз данных во внешней памяти и при выполнении запросов к базе данных. Это не противоречит тому, что при формулировании запроса к БД, например, на языке SQL можно потребовать сортировки результирующей таблицы в соответствии со значениями некоторых столбцов. Такой результат, вообще говоря, не отношение, а некоторый упорядоченный список кортежей.

Отсутствие упорядоченности атрибутов

Атрибуты отношений не упорядочены, поскольку по определению схема отношения есть множество пар {имя атрибута, имя домена}. Для ссылки на значение атрибута в кортеже отношения всегда используется имя атрибута. Это свойство теоретически позволяет, например, модифицировать схемы существующих отношений не только путем добавления новых атрибутов, но и путем удаления существующих атрибутов. Однако в большинстве существующих систем такая возможность не допускается, и хотя упорядоченность набора атрибутов отношения явно не требуется, часто в качестве неявного порядка атрибутов используется их порядок в линейной форме определения схемы отношения.

Атомарность значений атрибутов

Значения всех атрибутов являются атомарными. Это следует из определения домена как потенциального множества значений простого типа данных, т.е. среди значений домена не могут содержаться множества значений (отношения). Принято говорить, что в реляционных базах данных допускаются только нормализованные отношения или отношения, представленные в первой нормальной форме. Потенциальным примером ненормализованного отношения является следующее:

Можно сказать, что здесь мы имеем бинарное отношение, значениями атрибута ОТДЕЛЫ которого являются отношения. Заметим, что исходное отношение СОТРУДНИКИ является нормализованным вариантом отношения ОТДЕЛЫ:

Наиболее распространенная трактовка реляционной модели данных, по-видимому, принадлежит Дейту, который воспроизводит ее (с различными уточнениями) практически во всех своих книгах. Согласно Дейту реляционная модель состоит из трех частей, описывающих разные аспекты реляционного подхода: структурной части, манипуляционной части и целостной части.

В структурной части модели фиксируется, что единственной структурой данных, используемой в реляционных БД, является нормализованное отношение степени n. По сути дела, в предыдущих двух разделах этой лекции мы рассматривали именно понятия и свойства структурной составляющей реляционной модели.

В манипуляционной части модели утверждаются два фундаментальных механизма манипулирования реляционными БД - реляционная алгебра и реляционное исчисление. Первый механизм базируется в основном на классической теории множеств (с некоторыми уточнениями), а второй - на классическом логическом аппарате исчисления предикатов первого порядка.

Мы рассмотрим эти механизмы более подробно на следующей лекции, а пока лишь заметим, что основной функцией манипуляционной части реляционной модели является обеспечение меры реляционности любого конкретного языка реляционных БД: язык называется реляционным, если он обладает не меньшей выразительностью и мощностью, чем реляционная алгебра или реляционное исчисление.

Целостность сущности и ссылок

Наконец, в целостной части реляционной модели данных фиксируются два базовых требования целостности, которые должны поддерживаться в любой реляционной СУБД. Первое требование называется требованием целостности сущностей . Объекту или сущности реального мира в реляционных БД соответствуют кортежи отношений. Конкретно требование состоит в том, что любой кортеж любого отношения отличим от любого другого кортежа этого отношения, т.е. другими словами, любое отношение должно обладать первичным ключом. Как мы видели в предыдущем разделе, это требование автоматически удовлетворяется, если в системе не нарушаются базовые свойства отношений.

Второе требование называется требованием целостности по ссылкам и является несколько более сложным. Очевидно, что при соблюдении нормализованности отношений сложные сущности реального мира представляются в реляционной БД в виде нескольких кортежей нескольких отношений. Например, представим, что нам требуется представить в реляционной базе данных сущность ОТДЕЛ с атрибутами ОТД_НОМЕР (номер отдела), ОТД_КОЛ (количество сотрудников) и ОТД_СОТР (набор сотрудников отдела). Для каждого сотрудника нужно хранить СОТР_НОМЕР (номер сотрудника), СОТР_ИМЯ (имя сотрудника) и СОТР_ЗАРП (заработная плата сотрудника). Как мы вскоре увидим, при правильном проектировании соответствующей БД в ней появятся два отношения: ОТДЕЛЫ (ОТД_НОМЕР, ОТД_КОЛ) (первичный ключ - ОТД_НОМЕР) и СОТРУДНИКИ (СОТР_НОМЕР, СОТР_ИМЯ, СОТР_ЗАРП, СОТР_ОТД_НОМ) (первичный ключ - СОТР_НОМЕР).

Как видно, атрибут СОТР_ОТД_НОМ появляется в отношении СОТРУДНИКИ не потому, что номер отдела является собственным свойством сотрудника, а лишь для того, чтобы иметь возможность восстановить при необходимости полную сущность ОТДЕЛ. Значение атрибута СОТР_ОТД_НОМ в любом кортеже отношения СОТРУДНИКИ должно соответствовать значению атрибута ОТД_НОМ в некотором кортеже отношения ОТДЕЛЫ. Атрибут такого рода называется внешним ключом , поскольку его значения однозначно характеризуют сущности, представленные кортежами некоторого другого отношения (т.е. задают значения их первичного ключа). Говорят, что отношение, в котором определен внешний ключ, ссылается на соответствующее отношение, в котором такой же атрибут является первичным ключом.

Требование целостности по ссылкам, или требование внешнего ключа состоит в том, что для каждого значения внешнего ключа, появляющегося в ссылающемся отношении, в отношении, на которое ведет ссылка, должен найтись кортеж с таким же значением первичного ключа, либо значение внешнего ключа должно быть неопределенным (т.е. ни на что не указывать). Для нашего примера это означает, что если для сотрудника указан номер отдела, то этот отдел должен существовать.

Основные свойства реляционной БД.

1. Каждая таблица состоит из однотипных строк и имеет уникальное имя.

2. Строки имеют фиксированное число полей (столбцов) и значений (множественные поля и повторяющиеся группы недопустимы). Иначе говоря, в каждой позиции таблицы на пересечении строки и столбца всегда имеется в точности одно значение или ничего.

3. Строки таблицы обязательно отличаются друг от друга хотя бы единственным значением, что позволяет однозначно идентифицировать любую строку такой таблицы.

4. Столбцам таблицы однозначно присваиваются имена, и в каждом из них размещаются однородные значения данных (даты, фамилии, целые числа или денежные суммы).

5. Полное информационное содержание базы данных представляется в виде явных значений данных и такой метод представления является единственным. В частности, не существует каких-либо специальных "связей" или указателей, соединяющих одну таблицу с другой.

6. При выполнении операций с таблицей ее строки и столбцы можно обрабатывать в любом порядке безотносительно к их информационному содержанию. Этому способствует наличие имен таблиц и их столбцов, а также возможность выделения любой их строки или любого набора строк с указанными признаками.

Cтремление к минимизации числа таблиц для хранения данных может привести к возникновению различных проблем при их обновлении и будут даны рекомендации по разбиению некоторых больших таблиц на несколько маленьких.

Но как сформировать требуемый ответ, если нужные для него данные хранятся в разных таблицах?

Предложив реляционную модель данных, Э.Ф.Кодд создал и инструмент для удобной работы с отношениями – реляционную алгебру. Каждая операция этой алгебры использует одну или несколько таблиц (отношений) в качестве ее операндов и продуцирует в результате новую таблицу, т.е. позволяет "разрезать" или "склеивать" таблицы (рис. 3.3).



Произведение отношений

A X
A Y
B X
B Y
C X
C Y

· У операции реляционного деления два операнда - бинарное и унарное отношения. Результирующее отношение состоит из одноатрибутных кортежей, включающих значения первого атрибута кортежей первого операнда таких, что множество значений второго атрибута (при фиксированном значении первого атрибута) совпадает со множеством значений второго операнда.

Рис. Некоторые операции реляционной алгебры

Созданы языки манипулирования данными, позволяющие реализовать все операции реляционной алгебры и практически любые их сочетания.

С помощью единственного запроса на любом из этих языков можно соединить несколько таблиц во временную таблицу и вырезать из нее требуемые строки и столбцы (селекция и проекция).

Ограничения целостности сущности и по ссылкам должны поддерживаться СУБД. Для соблюдения целостности сущности достаточно гарантировать отсутствие в любом отношении кортежей с одним и тем же значением первичного ключа. С целостностью по ссылкам дела обстоят несколько более сложно.

Понятно, что при обновлении ссылающегося отношения (вставке новых кортежей или модификации значения внешнего ключа в существующих кортежах) достаточно следить за тем, чтобы не появлялись некорректные значения внешнего ключа. Но как быть при удалении кортежа из отношения, на которое ведет ссылка?

Здесь существуют три подхода, каждый из которых поддерживает целостность по ссылкам. Первый подход заключается в том, что запрещается производить удаление кортежа, на который существуют ссылки (т.е. сначала нужно либо удалить ссылающиеся кортежи, либо соответствующим образом изменить значения их внешнего ключа). При втором подходе при удалении кортежа, на который имеются ссылки, во всех ссылающихся кортежах значение внешнего ключа автоматически становится неопределенным. Наконец, третий подход (каскадное удаление) состоит в том, что при удалении кортежа из отношения, на которое ведет ссылка, из ссылающегося отношения автоматически удаляются все ссылающиеся кортежи.

В развитых реляционных СУБД обычно можно выбрать способ поддержания целостности по ссылкам для каждой отдельной ситуации определения внешнего ключа. Конечно, для принятия такого решения необходимо анализировать требования конкретной прикладной области.

Контрольные вопросы.

1. Перечислите свойства отношений.

2. Дайте определение потенциального (возможного) ключа отношения.

3. Перечислите свойства потенциального ключа, дайте определение первичного ключа.

4. Перечислите три части реляционной модели.


Тема урока: «Отношение. Основное свойство отношения».

Тип урока: урок открытия и применения новых знаний при решении задач.

Оборудование: компьютер (презентация PowerPoint), интерактивная доска Activ Inspire, интернет- ресурс.

Ход урока.

Цели:

  1. Создать условия для применения знаний и умений по отношениям в знакомой и новой учебной ситуации;
  2. Создать условия для осознания и осмысления нового математического понятия «отношение», основное свойство отношения; показать правила записи и прочтения отношений;
  3. Развивать познавательный интерес, умение сравнивать, обобщать; развивать внимание, воображение учащихся; развитие коммуникативности, навыков само- и взаимоконтроля, математического и общего кругозора, мышления, речи, внимания, памяти, умения анализировать, сравнивать, обобщать;
  4. Воспитывать социальную компетентность

1 . Организационный момент . Звучит музыка (Моцарт «Турецкий марш»).

Внимание! Внимание!

На нашем уроке Дед Мороз проводит акцию: « Меняю ёлочек на одну пятёрочку!»

2. Мотивация учебной деятельности.

Цель: включение учащихся в деятельность на личностно-значимом уровне.

Мотивационная беседа (слайд 1)

Здравствуйте – говорим мы каждое утро и улыбаемся солнцу, маме и новому дню. Мы улыбаемся и у нас хорошее настроение, мы улыбаемся, и радость наполняет наши сердца.

Взгляните на слайд. Вам нравится это фото? А музыку вы узнали?

Да, совершенно верно, это «Турецкий марш» Моцарта. А каков музыкальный размер этого произведения? Что это значит?

(слайд 2) При изучении музыкальных закономерностей Пифагор установил, что две струны дают приятное для слуха совместное звучание (консонанс), когда их длины относятся, как 1:2, 2:3 или 3:4.

(слайд 3) Утро. Мы собираемся и идём в школу. А у нас зима, заснеженные дороги и дома. Снег всё идёт и идет. Тысячи, сотни тысяч и миллиарды снежинок мягко ложатся нам под ноги. Поймайте одну из них и рассмотрите. Как они красивы!

Снежинки представляют собой водные кристаллы и вполне доступны нашему взору. Они все изысканной красоты и формы и все линии в них определены строгими законами геометрии. Если измерить длину их лучиков, углы между лучиками, радиусы окружностей, то соотношение размеров всегда будет одним и тем же.

(слайд 4) Нам нравится музыка, живопись, архитектура, прекрасные создания природы…

А почему? Что общего у музыкальных, поэтических и художественных произведений? Почему мы считаем создания природы совершенными?

Посмотрите на слайд: « Царское Село. Екатерининский дворец»

Волшебные места, где я живу душой,
Леса, где я любил, где чувство развивалось,
Где с первой юностью младенчество сливалось
И где, взлелеянный природой и мечтой,
Я знал поэзию, веселость и покой...

А. С. Пушкин

Такие строки посвятил А. С. Пушкин этим дням.

Если музыка – гармоническое упорядочение звуков, то поэзия – гармоническое упорядочение речи. Четкий ритм, закономерное чередование ударных и безударных слогов, упорядоченная размерность стихотворений, их эмоциональная насыщенность делают поэзию родной сестрой музыкальных произведений. Математические законы в поэзии в первую очередь проявляются как наличие определенного момента стихотворения (кульминации) в строке, приходящейся на точку деления общего числа строк стихотворения и равно оно 5/8. Так если в стихотворении 13 строк, то кульминация приходится на 5 строку.

По такому принципу построены все величайшие произведения музыки, поэзии, искусства, архитектуры и все природные творения. (слайд 4 падает Парфенон )

Оказывается, что расположение листьев на стеблях также носит строгий математический характер и это явление называется в ботанике «филлотаксисом».
Моцарт по такому принципу построил 91% своих произведений, а Пушкин 98%.

3 . Актуализация опорных знаний.

Цель: повторение изученного материала, необходимого для “открытия нового знания”.

(презентация паззл)

Входной тест. (Приложение № 1)

Устный счет: на слайде собирается паззл из правильных ответов. Работу выполняем в парах проговаривая правила, которые необходимы для решения этих заданий.

Оцениваем работу друг друга. Как обычно 2 мин.

Встали те, кто поставил 5 соседу. Сели те, кто получил 5. А теперь встали те, 5 не получил.

Умение классифицировать, обобщать, делать выводы.

Какие примеры мы решали? Для чего? – С чего мы начали урок? (С повторения.)
– Что мы повторили? (То, что нам понадобится для изучения нового.)

Подберите синоним к словам деление, частное двух чисел. Отношение.

4.Проверка домашнего задания (слайд 5) тетрадь на печатной основе № 121

Цель: организовать анализ учащимися возникшей ситуации и на этой основе выявить места и причины затруднения, осознать то, в чем именно состоит недостаточность их знаний, умений или способностей.

  1. Открытие новых знаний.

Цель: построение учащимися нового способа действий и формирование умений его применять как при решении задачи.

При решении разнообразных практических задач часто приходится сравнивать однородные величины между собой и находить отношение величин, выраженное целым или дробным числом. Например, скорость – это отношение пройденного пути к времени.

Географическая карта – один из важнейших документов человеческой культуры. Люди всегда рисовали уменьшенные изображения местности, причем разные участки уменьшали произвольно, в разной степени. Поэтому старинные чертежи местности не дают возможности понять, например, каково расстояние между берегами реки, чему равна длина реки и т.д. Чтобы план местности был точным, необходимо все его детали уменьшать в одинаковое число раз с сохранением всех пропорций, т.е. делать изображение в масштабе.

Отношение длины отрезка на карте к длине соответствующего отрезка на местности называется масштабом.

Пропорциональность в природе, искусстве, архитектуре означает соблюдение определенных соотношений между размерами отдельных частей растения, скульптуры, здания и является непременным условием правильного и красивого изображения предмета. Принцип золотого сечения - высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике, природе.

Отношение (слайд 6) Синонимы к слову «отношение» Чувство , Связь , Участие , Позиция , Расположение, Масштаб, Взаимоотношение, Причастность Отношение Взаимная связь разных предметов, действий, явлений, касательство между кем-чем-н. О. между двумя величинами. В математике: частное, получаемое от деления одного числа на другое, а также запись соответствующего действия.

Толковый словарь Ожегова

Мы поговорили о природе, архитектуре, поэзии, при чем здесь математика? В чем цель нашего урока?

– Какую тему мы изучаем?
– Как вы думаете, какая работа предстоит на уроке?
– Что для этого вы должны будете сделать? (Сами понять, что не знаем, а затем сами открыть новое.) Готовы?

Учащиеся формулируют цель урока.

И сегодня на уроке мы поговорим об отношении двух чисел.

Проблемные вопросы (слайд 7)

  • Что называют отношением двух чисел?
    Как можно записать отношение чисел а и в?
  • Что показывает отношение двух чисел?
  • В чем состоит основное свойство отношения?

7.Изучение нового материала.

Цель: Основной целью этапа реализации построенного проекта является построение учащимися нового способа действий и формирование умений его применять как при решении задачи, вызвавшей затруднение, так и при решении задач такого класса или типа вообще.

Найти отношение первого числа ко второму и найти обратное отношение

(слайд 8) 1.Масса воробья - 30г, масса колибри - 1,5г .(20 и 1/20)

(слайд 9) 2.Рост самого высокого человека на Земле 2м 80см, а самый маленький взрослый человек был ростом 40см .(7 и 1/7)

Что показывают найденные величины? О чём они говорят?

(слайд 10) Частное двух чисел а и в, отличных от нуля, называют отношением этих чисел или отношением числа а к числу в. Отношение показывает, во сколько раз первое число больше второго или какую часть первое число составляет от второго.

Открыли тетради. Число. Классная работа. Решаем № 722.

Что вы заметили при решении этого задания?

Учащиеся формулируют Основное свойство отношения: Отношение не изменится, если его члены умножить или разделить на одно и то же число, отличное от нуля.

8.Закрепление нового материала.

Цель: первичное закрепление с проговариванием во внешней речи является усвоение учащимися нового способа действия при решении типовых задач.

№ 723 .

Первый кусок – 9 метров

Второй кусок – 14,4 метров

Решение:

9 + 14,4 = 23,4 (м) длина всего куска

= = = отношение длины первого куска к длине всей верёвки

= = = отношение длины второго куска к длине всей верёвки

= = = отношение длины первого куска к длине второго куска

Ответ: (слайд 11)

(слайд 12) Двум учащимся выдаётся задание для исследовательской работы по «Золотому сечению». (Приложение № 2)

Двум учащимся выдаётся задание для исследовательской работы по поиску интересных задач.

(слайд 13) ещё 2 задачи решаем устно №№ 728, 729

(слайд 14) № 725

S = 22,05

а = 10,5 дм

22,05: 10,5 = 2,1 (дм) b

= =

= =

№ 727 решаем в парах, сравниваем с образцом

Свинец – 1 ,52 кг.

Олово – 0,76 кг.

Сплав 1,52+0,76 =2,28 кг.

Свинец и олово взяты в отношении 1,52: 0,76 = 2: 1 (основное свойство отношений)

Свинец составляет части сплава.

Олово составляет часть сплава

(слайд 15) сравниваем решение с образцом, закрепляем во внешней речи

Резерв №№ 732, 735, 736, 737 (слайд 17,18,19 задачи № 730, 731, 733)

9.Анализ исследовательских работ учащихся

Цель: постановка целей учебной деятельности и на этой основе – выбор способа и средств их реализации.
10.Рефлексия. Учащиеся заполняют лист рефлексии. (Приложение №3)

Цель: самооценка учащимися результатов своей учебной деятельности.

Предполагаемые вопросы.

  • Что было интересного на уроке?
  • Что узнали нового на уроке?
  • Какие задачи научились решать?
  • Где еще кроме математики применяется пропорциональность?

Вот и завершилось наше путешествие в страну Гармонии и пропорций. И это лишь начало, ведь впереди нас ждут новые открытия, увлекательные путешествия.

Вам понравилось на уроке? Подняли смайлики. (Приложение № 4)

Приложение 1.

(РАБОТА В ПАРАХ)

Входной тест

1. Выполнить деление дробей и

1) , 2) , 3) 6, 4)

2. Найти частное чисел и 4

1) , 2) , 3) , 4) 4

3. Найти значение выражения :

1) , 2) , 3) 1 , 4)

4. Указать пару взаимно обратных чисел.

1) 0,4 и , 2) 3 и , 3) 1 и 0 4) и 1

5. Какое равенство неверно?

1) = 0,8; 2) 44: 100 = 11: 25; 3) = ; 4) 15: 3 = 12: 4

Приложение 2.

Исследовательская работа «Золотое сечение».

Задание: измерить фотографии, книги, иллюстрации в учебнике, найти отношение их размеров (оно должно быть в идеале равным 8: 5) и проанализировать их с точки зрения гармоничности восприятия.

Правило золотого сечения было выведено Леонардо Да Винчи и является одним из самых главных. Наиболее важный элемент изображения, располагается на расстоянии 3/8 (примерно 1/3) по высоте или ширине кадра от его границы. Поделите кадр на девять одинаковых квадратов. Точки пересечения линий и есть “золотое сечение”.


На этой фотографии в построении кадра есть ошибки в расположении ключевых элементовданном случае лица). Лицо по центру не размещают, если этого не требует особенная симметрия кадра (в основном рекламное фото).

Также золотое сечение можно высчитать диагоналями. Проведем диагональ фотографии, затем из свободного угла опустим линию к этой диагонали под прямым углом. Таким образом, наша фотография окажется, разделена на три прямоугольных треугольника. Схему можно поворачивать как угодно, но самые важные части сюжета должны располагаться в этих треугольниках.

Самое удачное построение кадра, когда в каждой области этих трёх треугольников есть какой то акцентированный момент. При сьёмках природы, горизонт также не должен находиться посередине. Либо снизу, либо сверху.

информация к размышлению:
http://www.abc-people.com/data/leonardov/zolot_sech-txt.htm
http://www.onboard.ru/content/?id=724

Приложение № 3

Лист рефлексии

Чтобы узнать, какую часть число a составляет от числа b, нужно _______________________________________________________________.

Чтобы узнать, сколько процентов число a составляет от числа b, нужно __________________________.

Приложение № 4.

Всё понятно

Интересно

Могу объяснить другому

Сложно

Надо ещё поработать

Не понятно

Сложно

Не интересно

Предварительный просмотр:

Всё понятно

Интересно

Могу объяснить другому

Сложно

Надо ещё поработать

Сомневаюсь, что могу объяснить

Не понятно

Сложно

Не интересно

Предварительный просмотр:

Частное двух чисел называют _________________ этих чисел. _______________показывает во сколько раз _______ число _________ второго, или какую часть ______________ число составляет от __________.

Частное двух чисел называют _________________ этих чисел. _______________показывает во сколько раз _______ число _________ второго, или какую часть ______________ число составляет от __________.

Чтобы узнать, какую часть число a составляет от число b, нужно _______________________________________________________________.

Чтобы узнать, сколько процентов число a составляет от число b, нужно __________________________.

Частное двух чисел называют _________________ этих чисел. _______________показывает во сколько раз _______ число _________ второго, или какую часть ______________ число составляет от __________.

Чтобы узнать, какую часть число a составляет от число b, нужно _______________________________________________________________.

Чтобы узнать, сколько процентов число a составляет от число b, нужно __________________________.

Частное двух чисел называют _________________ этих чисел. _______________показывает во сколько раз _______ число _________ второго, или какую часть ______________ число составляет от __________.

Чтобы узнать, какую часть число a составляет от число b, нужно _______________________________________________________________.

Чтобы узнать, сколько процентов число a составляет от число b, нужно __________________________.

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него:

Лекция 21. Свойства отношений

1. Свойство рефлексивености

2. Свойство симметричности

3. Свойство транзитивности

Мы установили, что бинарное отношение на множестве X пред­ставляет собой множество упорядоченных пар элементов, принад­лежащих декартову произведению X х Х. Это математическая сущ­ность всякого отношения. Но, как и любые другие понятия, отноше­ния обладают свойствами. Их удалось выделить, изучая различные конкретные отношения. Свойств достаточно много, в нашем курсе мы будем изучать только некоторые.

Рассмотрим на множестве отрезков, представ­ленных на рис. 98, отношения перпендикулярно­сти, равенства и «длиннее». Построим графы этих отношений (рис. 99) и будем их сравнивать. Ви­дим, что граф отношения равенства отличается от двух других наличием петель в каждой его вершине. Эти петли - результат того, что отно­шение равенства отрезков обладает свойством: любой отрезок равен самому себе. Говорят, что отношение равенства обладает свойством рефлек­сивности или просто, что оно рефлексивно.

Определение. Отношение R на множестве X называется рефлексив­ным, если о каждом элементе множества X можно сказать, что он находится в отношении R с самим собой.

R рефлексивно на Х ↔ х R х для любого х € X.

опр.

Если отношение R рефлексивно на множестве X, то в каждой вер­шине графа данного отношения имеется петля. Справедливо и обрат­ное утверждение: граф, каждая вершина которого имеет петлю, задает отношения, обладающие свойством рефлексивности.

Примеры рефлексивных отношений:

Отношение «кратно» на множестве натуральных чисел (каждое натуральное число кратно самому себе);

Отношение подобия треугольников (каждый треугольник подо­бен самому себе).

Существуют отношения, которые свойством рефлексивности не обладают. Таким, например, является отношение перпендикулярности на множестве отрезков: нет ни одного отрезка, о котором можно ска­зать, что он перпендикулярен самому себе. Поэтому на графе отноше­ния перпендикулярности (рис. 99) нет ни одной петли. Не обладает свойством рефлексивности и отношение «длиннее» для отрезков.

Обратим теперь внимание на графы отношений перпендикулярно­сти и равенства отрезков. Они «похожи» тем, что если есть одна стрелка, соединяющая пару элементов, то обязательно есть и другая, соединяющая те же элементы, но идущая в противоположном направ­лении. Эта особенность графа отражает те свойства, которыми обла­дают отношения параллельности и равенства отрезков:

Если один отрезок перпендикулярен другому отрезку, то этот «другой» перпендикулярен первому;



Если один отрезок равен другому отрезку, то этот «другой» равен первому.

Про отношения перпендикулярности и равенства отрезков гово­рят, что они обладают свойством симметричности или просто сим­метричны.

Определение. Отношение R на множестве X называется симмет­ричным, если выполняется условие: из того, что элемент х находит­ся в отношении R с элементом у, следует, что и элементу находит­ся в отношении R с элементом х.

Используя символы, это отношение можно записать в таком виде:

R симметрично на Х ↔ (х R y →yRx).

опр.

Граф симметричного отношения обладает особенностью: вместе с каждой стрелкой, идущей от х к у, граф содержит и стрелку, идущую от у к x . Справедливо и обратноеутверждение. Граф, содержащий вместе с каждой стрелкой, идущей от x к у, и стрелку, идущую от у к x , является графом симметричного отношения.

В дополнение к рассмотренным двум примерам симметричных от­ношений присоединим еще такие:

Отношениепараллельности на множестве прямых (если прямая x параллельна прямой у, то и прямая у параллельна прямой х)

Отношение подобия треугольников (если треугольник F подобен треугольнику Р, то треугольник Р подобен треугольнику F).

Существуют отношения, которые свойством симметричности не обладают. Таким, например, является отношение «длиннее» на мно­жестве отрезков. Действительно, если отрезок x длиннее отрезка у, то отрезок у не может быть длиннее отрезка х. Про отношения «длиннее» говорят, что оно обладает свойством антисимметрично­сти или просто антисимметрично.

Определение. Отношение R на множестве X называется анти­симметричным, если для различных элементов х и у из множества X выполнено условие: из того, что х находится в отношении R с элементом у, следует, что элемент у в отношении R с элементом х не находится.

R симметрично на Х ↔ (х R y ^ x≠y →yRx).

опр.

Граф антисимметричного отношения обладает особенностью: если две вершины графа соединены стрелкой, то эта стрелка только одна. Справедливо и обратное утверждение: граф, вершины которого со­единены только одной стрелкой, есть граф антисимметричного отношения.

Кроме отношения «длиннее» на множестве отрезков свойством ан­тисимметричности, например, обладают:

Отношение «больше» для чисел (если х больше у, то у не может
быть больше х);

Отношение «больше на 2» для чисел (если х боль­ше у на 2, то у не может быть больше на 2 числа х),

Существуют отношения, не обладающие ни свой­ством симметричности, ни свойством антисиммет­ричности. Рассмотрим, например, отношение «быть сестрой» на множестве детей одной семьи. Пусть в семье трое детей: Катя, Маша и Толя. Тогда граф отношения «быть сестрой» будет таким, как на рисунке 100. Он показывает, что данное отношение не обладает ни свой­ством симметричности, ни свойством антисимметричности.

Обратим внимание еще раз на одну особенность графа отноше­ния «длиннее» (рис. 99). На нем можно заметить: если стрелки про­ведены от е к а и от а к с, то есть стрелка от е к с ; если стрелки приведены от е к b и от b к с, то есть стрелка и от е к с и т.д. Эта особенность графа отражает важное свойство отношения «длиннее»: если первый отрезок длиннее второго, а второй - длиннее третьего, то первый - длиннее третьего. Говорят, что это отношение обладает свойством транзитивности или просто транзитивно.

Определение. Отношение R на множестве X называется транзи­тивным, если выполняется условие; из того, что элемент х нахо­дится в отношении R с элементом у и элемент у находится в от­ношении R с элементом z, следует, что элемент х находится в от­ношении К с элементом z .

Используя символы, это определение можно записать в таком виде:

R транзитивно на X ↔ (х R y ^ yRz → xRz).

опр.

Граф транзитивного отношения с каждой парой стрелок, идущих от x к у и у к z , содержит стрелку, идущую от х к z. Справедливо и обратное утверждение.

Кроме отношения «длиннее» на множестве отрезков свойством транзитивности обладает отношение равенства: если отрезок х равен отрезку у и отрезок у равен отрезку z, то отрезок х равен отрезку z, Это свойство отражено и на графе отношения равенства (рис. 99)

Существуют отношения, которые свойством транзитивности не об­ладают. Таким отношением является, например, отношение перпенди­кулярности: если отрезок а перпендикулярен отрезку d , а отрезок d перпендикулярен отрезку b, то отрезки а и b не перпендикулярны!

Рассмотрим еще одно свойство отношений, которое называют свой­ством связанности, а отношение, обладающее им, называют связанным.

Определение. Отношение R на множестве X называется связан­ным, если для любых элементов х и у из множества X выполняется условие: из того, что х и у различны, следует, что либо х находит­ся в отношении R с элементом у, либо элемент у находится в от­ношении R с элементом х.

Используя символы, это определение можно записать в таком виде:

R связано на множестве X ↔ (х ≠ у => хRу v уRх).

опр.

Например, свойством связанности обладают отношения «больше» длянатуральных чисел: для любых различных чисел х и у можно ут­верждать, что либо х > у, либо у > х.

На графе связанного отношения любые две вершины соединены стрелкой. Справедливо и обратное утверждение.

Существуют отношения, которые свойством связанности не обла­дают. Таким отношением, например, является отношение делимости на множестве натуральных чисел: можно назвать такие числа х и у, что ни число х не является делителем числа у, ни число у не является делителем числа х.

Выделенные свойства позволяют анализировать различные отно­шения с общих позиций - наличия (или отсутствия) у них тех или иных свойств.

Так, если суммировать все сказанное об отношении равенства, за­данном на множестве отрезков (рис. 99), то получается, что оно реф­лексивно, симметрично и транзитивно. Отношение «длиннее» на том же множестве отрезков антисимметрично и транзитивно, а отношение перпендикулярности - симметрично, но оно не обладает свойствами рефлексивности и транзитивности. Все эти отношения на заданном множестве отрезков связанными не являются.

Задача 1. Сформулировать свойства отноше­ния R, заданного при помощи графа (рис. 101).

Решение. Отношение R -антисимметрично, так как вершины графа соединяются только одной стрелкой.

Отношение R - транзитивно, так как с парой стрелок, идущих от b к а и от а к с, на графе есть стрелка, идущая от b к с.

Отношение R - связанно, так как любые две вер­шины соединены стрелкой.

Отношение R свойством рефлексивности не обла­дает, так как на графе есть вершины, в которых петли нет.

Задача 2. Сформулировать свойства отношения «больше в 2 раза», заданного на множестве натуральных чисел.

Решение. «Больше в 2 раза» - это краткая форма отношения «число х больше числа у в 2 раза». Это отношение антисимметрично, так как выполняется условие: из того, что число х больше числа у в 2 раза, следует, что число y не больше числа x 2 раза.

Данное отношение не обладает свойством рефлексивности, пото­му что ни про одно число нельзя сказать, что оно больше самого себя в 2 раза.

Заданное отношение не транзитивно, так как из того, что число x больше числа у на 2, а число у больше числа z на 2, следует, что число х не может быть больше числа z на 2.

Это отношение на множестве натуральных чисел свойством связан­ности не обладает, так как существуют пары таких чисел х и у, что ни число х не больше числа у в два раза, ни число у не больше х в 2 раза. Например, это числа 7 и 3, 5 и 8 и др.

Отношение, заданное на множестве, может обладать рядом свойств, а именно:

2. Рефлексивность

Определение. Отношение R намножестве Х называется рефлексивным, если каждый элемент х множества Х находится в отношении R с самим собой.

Используя символы, это отношение можно записать в таком виде:

R рефлексивно на Х Û("х Î Х ) х R х

Пример. Отношение равенства на множестве отрезков рефлексивно, т.к. каждый отрезок равен себе самому.

Граф рефлексивного отношения во всех вершинах имеет петли.

2. Антирефлексивность

Определение. Отношение R намножестве Х называется антирефлексивным, если ни один элемент х множества Х не находится в отношении R с самим собой.

R антирефлексивно на Х Û("х Î Х )

Пример. Отношение «прямая х перпендикулярна прямой у » на множестве прямых плоскости антирефлексивно, т.к. ни одна прямая плоскости не перпендикулярна самой себе.

Граф антирефлексивного отношения не содержит ни одной петли.

Заметим, что существуют отношения, не являющиеся ни рефлексивными, ни антирефлексивными. Например, рассмотрим отношение «точка х симметрична точке у » на множестве точек плоскости.

l

Точка х симметрична точке х – истинно; точка у симметрична точке у – ложно, следовательно, мы не можем утверждать, что все точки плоскости симметричны сами себе, также мы не можем и утверждать, что ни одна точка плоскости не симметрична сама себе.

3. Симметричность

Определение . Отношение R намножестве Х называется симметричным, если из того, что элемент х находится в отношении R с элементом у , следует, что и элемент у находится в отношении R с элементом х .

R симметричнона Х Û("х , у Î Х ) х R у Þ у R х

Пример. Отношение «прямая х пересекает прямую у на множестве прямых плоскости» симметрично, т.к. если прямая х пересекает прямую у , то и прямая у обязательно будет пересекать прямую х .

Граф симметричного отношения вместе с каждой стрелкой из точки х в точку у должен содержать стрелку, соединяющую те же точки, но в обратном направлении.

4. Асимметричность

Определение . Отношение R намножестве Х называется асимметричным, если ни для каких элементов х , у из множества Х не может случиться, что элемент х находится в отношении R с элементом у и элемент у находится в отношении R с элементом х .

R асимметричнона Х Û("х , у Î Х ) х R у Þ

Пример. Отношение «х < у » асимметрично, т.к. ни для какой пары элементов х , у нельзя сказать, что одновременно х < у и у < х .

Граф асимметричного отношения не имеет петель и если две вершины графа соединены стрелкой, то эта стрелка только одна.

5. Антисимметричность

Определение . Отношение R намножестве Х называется антисимметричным, если из того что х находится в отношении с у , а у находится в отношении с х следует, что х = у.

R антисимметричнона Х Û("х , у Î Х ) х R у Ù у R х Þ х = у

Пример. Отношение «х £ у » антисимметрично, т.к. условия х £ у и у £ х одновременно выполняются только тогда, когда х = у.

Граф антисимметричного отношения имеет петли и если две вершины графа соединены стрелкой, то эта стрелка только одна.

6. Транзитивность

Определение . Отношение R намножестве Х называется транзитивным, если для любых элементов х , у , z из множества Х из того, что х находится в отношении с у , а у находится в отношении с z следует, что х находится в отношении с z.

R транзитивнона Х Û("х , у , z Î Х ) х R у Ù у R z Þ х R z

Пример. Отношение «х кратно у » транзитивно, т.к. если первое число кратно второму, а второе кратно третьему, то первое число будет кратно третьему.

Граф транзитивного отношения с каждой парой стрелок от х к у и от у к z содержит стрелку, идущую от х к z.

7. Связность

Определение . Отношение R намножестве Х называется связным, если для любых элементов х , у из множества Х х находится в отношении с у или у находится в отношении с х или х = у .

R связнона Х Û("х , у , z Î Х ) х R у Ú у R z Ú х = у

Другими словами: отношение R намножестве Х называется связным, если для любых различных элементов х , у из множества Х х находится в отношении с у или у находится в отношении с х или х = у .

Пример. Отношение «х < у » связно, т.к. какие бы мы действительные числа не взяли, обязательно одно из них будет больше другого или они равны.

На графе связного отношения все вершины соединены между собой стрелками.

Пример. Проверить, какими свойствами обладает

отношение «х – делитель у », заданное на множестве

Х = {2; 3; 4; 6; 8}.

1) данное отношение рефлексивно, т.к. каждое число из данного множества является делителем самого себя;

2) свойством антирефлексивности данное отношение не обладает;

3) свойство симметричности не выполняется, т.к. например, 2 является делителем числа 4, но 4 делителем числа 2 не является;

4) данное отношение антисимметрично: два числа могут быть одновременно делителями друг друга только в том случае, если эти числа равны;

5) отношение транзитивно, т.к. если одно число является делителем второго, а второе – делителем третьего, то первое число обязательно будет делителем третьего;

6) отношение свойством связности не обладает, т.к. например, числа 2 и 3 на графе стрелкой не соединены, т.к. два различных числа 2 и 3 делителями друг друга не являются.

Таким образом, данное отношение обладает свойствами рефлексивности, асимметричности и транзитивности.

§ 3. Отношение эквивалентности.
Связь отношения эквивалентности с разбиением множества на классы

Определение. Отношение R на множестве Х называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.

Пример. Рассмотрим отношение «х однокурсник у » на множестве студентов педфака. Оно обладает свойствами:

1) рефлексивности, т.к. каждый студент является однокурсником самому себе;

2) симметричности, т.к. если студент х у , то и студент у является однокурсником студента х ;

3) транзитивности, т.к. если студент х - однокурсник у , а студент у – однокурсник z , то студент х будет однокурсником студента z .

Таким образом, данное отношение обладает свойствами рефлексивности, симметричности и транзитивности, а значит, является отношением эквивалентности. При этом множество студентов педфака можно разбить на подмножества, состоящие из студентов, обучающихся на одном курсе. Получаем 5 подмножеств.

Отношением эквивалентности являются также, например, отношение параллельности прямых, отношение равенства фигур. Каждое такое отношение связано с разбиением множества на классы.

Теорема. Если на множестве Х задано отношение эквивалентности, то оно разбивает это множество на попарно непересекающиеся подмножества (классы эквивалентности).

Верно и обратное утверждение: если какое-либо отношение, заданное на множестве Х , порождает разбиение этого множества на классы, то оно является отношением эквивалентности.

Пример. На множестве Х = {1; 2; 3; 4; 5; 6; 7; 8} задано отношение «иметь один и тот же остаток при делении на 3». Является ли оно отношением эквивалентности?

Построим граф данного отношения:



Данное отношение обладает свойствами рефлексивности, симметричности и транзитивности, следовательно, является отношение эквивалентности и разбивает множество Х на классыэквивалентности. В каждом классе эквивалентности будут числа, которые при делении на 3 дают один и тот же остаток: Х 1 = {3; 6}, Х 2 = {1; 4; 7}, Х 3 = {2; 5; 8}.

Считают, что класс эквивалентности определяется любым своим представителем, т.е. произвольным элементом этого класса. Так, класс равных дробей можно задать, указав любую дробь, принадлежащую этому классу.

В начальном курсе математики также встречаются отношения эквивалентности, например, «выражения х и у имеют одинаковые числовые значения», «фигура х равна фигуре у ».