Изменение внутренней энергии какого тела происходит. Способы изменения внутренней энергии

Внутренняя энергия тела может передаваться и путем совершения работы. Так, при обработке детали на станке нагреваются резец и деталь, что указывает на увеличение их внутренней энергии. В процессе совершения работы по накачиванию воздуха в автомобильную или футбольную камеры по той же причине нагреваются насос и сжатый воздух. В рассмотренных примерах возрастание внутренней энергии тел происходит за счет увеличения в результате нагревания кинетической энергии их молекул.

Если взять два куска льда при температуре 0°С и начать и тереть друг о друга, то лед будет таять. Таяние льда происходит при постоянной температуре, следовательно, кинетическая энергия его молекул не увеличивается. В этом случае энергия, затраченная на совершение работы против сил трения, пошла на увеличение потенциальной энергии воды, которая получилась из; льда. Таким образом, на основе рассмотренных примеров и опытов приходим к выводу, что внутренняя энергия тела увеличивается, если над ним совершает работу другое тело.

Немецкий ученый Майер и английский ученый Джоуль доказали (первый в 1824 г. теоретически, второй в 1843 г.- опытно), что если внутренняя энергия тела (системы тел) увеличивается вследствие совершения над ним работы, то это увеличение равно совершенной работе.

Был проделан следующий опыт. Равномерно падающие грузы Р посредством шнуров А 1 и А 2 приводили во вращение мешалку В, помещенную во внутренний сосуд калориметра (рис. 26). В последнем находилась ртуть. Ее температура в начале и в конце опыта измерялась термометром С. Для увеличения трения между мешалкой и ртутью внутренние стенки калориметра имели пластинки Д. При вращении мешалки между ее лопастями и ртутью, а также между ртутью и пластинками возникало трение. В результате совершенной работы против сил трения произошло увеличение внутренней энергии ртути и калориметра, о чем свидетельствовало повышение их температуры. Джоуль подсчитал совершенную работу и вызванное ею увеличение внутренней энергии. За n раз опускания и подъема груза совершенная работа A = 2Phn . Увеличение внутренней энергии ртути и калориметра ΔU = с р m р Δt° + c k m k Δt° оказалось равным совершенной работе А = ΔU.

Находящийся в бутылке сжатый воздух, охлажденный до комнатной температуры, заставим совершать работу против сил внешнего давления и вращать вертушку (рис. 27). Термометр, помещенный в струю воздуха, совершающего работу, показывает, что его температура стала ниже. Пар и газ, совершая работу в двигателях, также охлаждаются. Значит, внутренняя энергия тела уменьшается, если за счет нее тело совершает работу.

И при теплообмене, и при совершении работы cmΔt 0 есть изменение внутренней энергии. В первом случае оно обозначается Q и называется количеством теплоты, а во втором случае так и называется изменением внутренней энергии и обозначается ΔU = cmΔt° . При изменении внутренней энергии путем совершения работы нельзя пользоваться термином "количество теплоты".

Работа является универсальной формой передачи энергии; в процессе работы могут происходить превращения любых видов энергии, в том числе механической, во внутреннюю и наоборот. Теплообмен - это специфическая форма передачи внутренней энергии и притом только от нагретого тела к холодному.

Внутренняя энергия тела не может являться постоянной величиной. Она может изменяться у любого тела. Если повысить температуру тела, то его внутренняя энергия увеличится, т.к. увеличится средняя скорость движения молекул. Таким образом, увеличивается кинетическая энергия молекул тела. И, наоборот, при понижении температуры, внутренняя энергия тела уменьшается.

Можно сделать вывод: внутренняя энергия тела изменяется, если меняется скорость движения молекул. Попытаемся определить, каким методом можно увеличить или уменьшить скорость передвижения молекул. Рассмотрим следующий опыт. Закрепим на подставке латунную трубку с тонкими стенками. Наполним трубку эфиром и закроем его пробкой. Затем обвяжем его веревкой и начнем интенсивно двигать веревкой в разные стороны. Спустя определенное время, эфир закипит, и сила пара вытолкнет пробку. Опыт демонстрирует, что внутренняя энергия вещества (эфира) возросла: ведь он изменил свою температуру, при этом закипев.

Увеличение внутренней энергии произошло за счет совершения работы при натирании трубкой веревкой.

Как мы знаем, нагревание тел может происходить и при ударах, сгибании или разгибании, говоря проще, при деформации. Во всех приведенных примерах, внутренняя энергия тела возрастает.

Таким образом, внутреннюю энергию тела можно увеличить, совершая над телом работу.

Если же работу выполняет само тело, его внутренняя энергия уменьшается.

Рассмотрим еще один опыт.

В стеклянный сосуд, у которого толстые стенки и он закрыт пробкой, накачаем воздух через специально проделанное отверстие в ней.

Спустя некоторое время пробка вылетит из сосуда. В тот момент, когда пробка вылетает из сосуда, мы сможем увидеть образование тумана. Следовательно, его образование обозначает, что воздух в сосуде стал холодным. Сжатый воздух, который находится в сосуде, при выталкивании пробки наружу совершает определенную работу. Данную работу он выполняет за счет своей внутренней энергии, которая при этом сокращается. Делать выводы об уменьшении внутренней энергии можно исходя из охлаждения воздуха в сосуде. Таким образом, внутреннюю энергию тела можно изменять путем совершения определенной работы.

Однако, внутреннюю энергию возможно изменить и иным способом, без совершения работы. Рассмотрим пример, вода в чайнике, который стоит на плите закипает. Воздух, а также другие предметы в помещении нагреваются от радиатора центрального направления. В подобных случаях, внутренняя энергия увеличивается, т.к. увеличивается температура тел. Но работа при этом не совершается. Значит, делаем вывод, изменение внутренней энергии может произойти не из-за совершения определенной работы.

Рассмотрим еще один пример.

В стакан с водой опустим металлическую спицу. Кинетическая энергия молекул горячей воды, больше кинетической энергии частиц холодного металла. Молекулы горячей воды будут передавать часть своей кинетической энергии частицам холодного металла. Таким образом, энергия молекул воды будет определенным образом уменьшаться, тем временем как энергия частиц металла будет повышаться. Температуры воды понизится, а температуры спицы не спеша, будет увеличиваться. В дальнейшем, разница между температурой спицы и воды исчезнет. За счет этого опыта мы увидели изменение внутренней энергии различных тел. Делаем вывод: внутренняя энергия различных тел изменяется за счет теплопередачи.

Процесс преобразования внутренней энергии без совершения определенной работы над телом или самим телом называется теплопередачей.

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Если в закрытую пробкой толстостенную банку, дно которой покрыто водой, накачивать, то через какое-то время пробка из банки вылетит и в банке образуется туман. Пробка вылетела из банки, потому что находившийся там воздух действовал на неё с определённой силой. Воздух при вылете пробки совершил работу. Известно, что работу тело может совершить, если оно обладает энергией. Следовательно, воздух в банке обладает энергией.

При совершении воздухом работы понизилась его температура, изменилось его состояние. При этом механическая энергия воздуха не изменилась: не изменились ни его скорость, ни его положение относительно Земли. Следовательно, работа была совершена не за счёт механической, а за счёт другой энергии. Эта энергия - внутренняя энергия воздуха, находящегося в банке.

Внутренняя энергия тела – это сумма кинетической энергии движения его молекул и потенциальной энергии их взаимодействия. Кинетической энергией (Ек ) молекулы обладают, так как они находятся в движении, а потенциальной энергией (Еп ), поскольку они взаимодействуют. Внутреннюю энергию обозначают буквой U . Единицей внутренней энергии является 1 джоуль (1 Дж ). U = Eк + En.

Способы изменения внутренней энергии

Чем больше скорости движения молекул, тем выше температура тела, следовательно, внутренняя энергия зависит от температуры тела . Чтобы перевести вещество из твёрдого состояния в жидкое состояние, например, превратить лёд в воду, нужно подвести к нему энергию. Следовательно, вода будет обладать большей внутренней энергией, чем лёд той же массы, и, следовательно, внутренняя энергия зависит от агрегатного состояния тела .

Внутреннюю энергию можно изменить при совершении работы . Если по куску свинца несколько раз ударить молотком, то даже на ощупь можно определить, что кусок свинца нагреется. Следовательно, его внутренняя энергия, так же как и внутренняя энергия молотка, увеличилась. Это произошло потому, что была совершена работа над куском свинца.

Если тело само совершает работу, то его внутренняя энергия уменьшается, а если над ним совершают работу, то его внутренняя энергия увеличивается.

Если в стакан с холодной водой налить горячую воду, то температура горячей воды понизится, а холодной воды - повысится. В рассмотренном примере механическая работа не совершается, внутренняя энергия тел изменяется путём теплопередачи , о чем и свидетельствует понижение её температуры.

Молекулы горячей воды обладают большей кинетической энергией, чем молекулы холодной воды. Эту энергию молекулы горячей воды передают молекулам холодной воды при столкновениях, и кинетическая энергия молекул холодной воды увеличивается. Кинетическая энергия молекул горячей воды при этом уменьшается.

Теплопередача – это способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы.

В приведенной ниже статье речь пойдет о внутренней энергии и способах изменения ее. Здесь мы ознакомимся с общим определением ВЭ, с ее значением и двумя видами изменения состояния энергией, которой обладает физическое тело, объект. В частности будет рассмотрено явление теплопередачи и совершение работы.

Введение

Внутренняя энергия - это та часть ресурса системы термодинамического характера, которая не является зависимой от конкретной отсчетной системы. Она может изменять свое значение в пределах изучаемой проблемы.

Характеристики равного значения в системе отсчета, по отношению к которой центральная масса тела/объекта макроскопических размеров являет собой состояние покоя, обладают одинаковой полной и внутренней энергиями. Они всегда соответствуют друг другу. Набор частей, из которых состоит полная энергия, входящая во внутреннюю, является непостоянным и зависит от условий решаемой задачи. Другими словами, ВЭ не является специфическим видом энергетического ресурса. Она представляет собой общую совокупность ряда компонентов системы полной энергии, которые изменяются с учетом конкретных ситуаций. Способы изменения внутренней энергии базируются на двух основных принципах: теплопередаче и совершении работы.

ВЭ является специфическим понятием для систем термодинамического характера. Она позволяет вводить в пользование физики разнообразные величины, такие как температура и энтропия, размерность химического потенциала, масса веществ, образующих систему.

Выполнение работы

Существует два способа изменения внутренней энергии тел(а). Первый образуется благодаря процессу совершения непосредственной работы над объектом. Второй - это явление теплопередачи.

В случаи, если выполнение работы совершается самим телом, его показатель внутренней энергии будет уменьшаться. Когда процесс будет завершен кем-то или чем-то над телом, тогда его показатель ВЭ будет расти. При этом наблюдается трансформация механического энергетического ресурса во внутренний тип энергии, которым обладает объект. Также может протекать все и наоборот: механическая во внутреннюю.

Теплопередача увеличивает величину ВЭ. Однако если тело будет остывать, то и энергия будет снижаться. При постоянном поддержании трансляции тепла, показатель будет возрастать. Сжатие газов служит примером увеличения показателя ВЭ, а их расширение (газов) - следствие уменьшения величины внутренней энергии.

Явление теплопередачи

Изменение внутренней энергии способом теплопередачи представляет собой увеличение/снижение энергетического потенциала. Им обладает тело, без проведения определенной (в частности механической) работы. Передающееся количество энергии именуют теплотой (Q, Дж), а сам процесс подчиняется всеобщему ЗСЭ. Совершение изменений во ВЭ всегда отражается ростом или снижение температуры самого тела.

Оба способа изменения внутренней энергии (работа и теплопередача) могут совершаться по отношению к одному объекту в одновременном порядке, т. е. они могут совмещаться.

Изменить ВЭ можно, например, создавая трение. Здесь четко отслеживается совершение механической работы (трение) и явление теплообмена. Подобным образом старались добывать огонь наши предки. Они создавали трение между древесиной, температура воспламенения которой соответствует отметке в 250 °С.

Изменение внутренней энергии тела посредством совершения работы или теплопередачей может происходить в один и тот же отрезок времени, т. е. эти два вида средств могут работать совместно. Однако простого трения в конкретном случае будет мало. Для этого одну ветвь необходимо было заострять. В настоящее время человек может получить огонь при помощи трения спичек, головки которых покрывают горючим веществом, воспламеняющимся при 60-100 °С. Первая подобная продукция началась создаваться в 30-ых годах XIX века. Это были фосфорные спички. Они способны загораться при относительно низкой температуре - 60 °С. В настоящее время пользуются которые были запущены в производство в 1855 года.

Зависимость энергии

Говоря о способах изменения внутренней энергии, важно будет упомянуть также о зависимости этого показателя от температуры. Дело в том, что количество этого энергетического ресурса обусловлено средней величиной кинетической энергии, сосредоточенной в молекуле тела, которая, в свою очередь, напрямую зависит от показателя температуры. Именно по этой причине изменение температуры всегда приводит к изменению ВЭ. Из этого также следует, что нагревание приводит к росту энергии, а охлаждение вызывает ее уменьшение.

Температура и теплообмен

Способы изменения внутренней энергии тела делятся на: теплопередачу и совершение механической работы. Однако важно будет знать, что количество теплоты и температура - это не одно и то же. Эти понятия нельзя путать. Температурные величины определяются градусами, а количество передаваемой или переданной теплоты определяется при помощи джоулей (Дж).

Контакт двух тел, одно из которых будет горячее, всегда приводит к утрате тепла одним (более горячим) и к приобретению его другим (более холодным).

Важно отметить, что оба способа изменения ВЭ тела всегда приводят к одинаковым результатам. Определить, каким именно способом было достигнуто ее изменение, по конечному состоянию тела, невозможно.

Частицы любого тела атомы или молекулы совершают хаотическое непрекращающееся движение (так называемое тепловое движение). Поэтому каждая частица обладает некоторой кинетической энергией.

Кроме того, частицы вещества взаимодействуют друг с другом силами электрического притяжения и отталкивания, а также посредством ядерных сил. Стало быть, вся система частиц данного тела обладает ещё и потенциальной энергией.

Кинетическая энергия теплового движения частиц и потенциальная энергия их взаимодействия вместе образуют новый вид энергии, не сводящийся к механической энергии тела (т. е. кинетической энергии движения тела как целого и потенциальной энергии его взаимодействия с другими телами). Этот вид энергии называется внутренней энергией.

Внутренняя энергия тела это суммарная кинетическая энергия теплового движения его частиц плюс потенциальная энергия их взаимодействия друг с другом.

Внутренняя энергия термодинамической системы это сумма внутренних энергий тел, входящих в систему.

Таким образом, внутреннюю энергию тела образуют следующие слагаемые.

1. Кинетическая энергия непрерывного хаотического движения частиц тела.

2. Потенциальная энергия молекул (атомов), обусловленная силами межмолекулярного взаимодействия.

3. Энергия электронов в атомах.

4. Внутриядерная энергия.

В случае простейшей модели вещества идеального газа для внутренней энергии можно получить явную формулу.

8.1 Внутренняя энергия одноатомного идеального газа

Потенциальная энергия взаимодействия частиц идеального газа равна нулю (напомним, что в модели идеального газа мы пренебрегаем взаимодействием частиц на расстоянии). Поэтому внутренняя энергия одноатомного идеального газа сводится к суммарной кинетической энергии поступательного8 движения его атомов. Эту энергию можно найти, умножив число атомов газа N на среднюю кинетическую энергию E одного атома:

U = NE = N

kT = NA

U = 3 2 m RT:

Мы видим, что внутренняя энергия идеального газа (масса и химический состав которого неизменнны) является функцией только его температуры. У реального газа, жидкости или твёрдого тела внутренняя энергия будет зависеть ещё и от объёма ведь при изменении объёма изменяется взаимное расположение частиц и, как следствие, потенциальная энергия их взаимодействия.

8 У многоатомного газа приходится ещё учитывать вращение молекул и колебания атомов внутри молекул.

8.2 Функция состояния

Важнейшее свойство внутренней энергии заключается в том, что она является функцией состояния термодинамической системы. А именно, внутренняя энергия однозначно определяется набором макроскопических параметров, характеризующих систему, и не зависит от ¾предыстории¿ системы, т. е. от того, в каком состоянии система находилась прежде и каким конкретно образом она оказалась в данном состоянии.

Так, при переходе системы из одного состояния в другое изменение её внутренней энергии определяется лишь начальным и конечным состояниями системы и не зависит от пути перехода из начального состояния в конечное. Если система возвращается в исходное состояние, то изменение её внутренней энергии равно нулю.

Опыт показывает, что существует лишь два способа изменения внутренней энергии тела:

совершение механической работы;

теплопередача.

Попросту говоря, нагреть чайник можно только двумя принципиально разными способами: тереть его чем-нибудь или поставить на огонь:-) Рассмотрим эти способы подробнее.

8.3 Изменение внутренней энергии: совершение работы

Если работа совершается над телом, то внутренняя энергия тела возрастает.

Например, гвоздь после удара по нему молотком нагревается и немного деформируется. Но температура это мера средней кинетической энергии частиц тела. Нагревание гвоздя свидетельствует об увеличении кинетической энергии его частиц: в самом деле, частицы разгоняются от удара молотком и от трения гвоздя о доску.

Деформация же есть не что иное, как смещение частиц друг относительно друга; гвоздь после удара испытывает деформацию сжатия, его частицы сближаются, между ними возрастают силы отталкивания, и это приводит к увеличению потенциальной энергии частиц гвоздя.

Итак, внутренняя энергия гвоздя увеличилась. Это явилось результатом совершения над ним работы работу совершили молоток и сила трения о доску.

Если же работа совершается самим телом, то внутренняя энергия тела уменьшается. Пусть, например, сжатый воздух в теплоизолированном сосуде под поршнем расширяется

и поднимает некий груз, совершая тем самым работу9 . В ходе такого процесса воздух будет охлаждаться его молекулы, ударяя вдогонку по движущемуся поршню, отдают ему часть своей кинетической энергии. (Точно так же футболист, останавливая ногой быстро летящий мяч, делает ею движение от мяча и гасит его скорость.) Стало быть, внутренняя энергия воздуха уменьшается.

Воздух, таким образом, совершает работу за счёт своей внутренней энергии: поскольку сосуд теплоизолирован, нет притока энергии к воздуху от каких-либо внешних источников, и черпать энергию для совершения работы воздух может только из собственных запасов.

8.4 Изменение внутренней энергии: теплопередача

Теплопередача это процесс перехода внутренней энергии от более горячего тела к более холодному, не связанный с совершением механической работы. Теплопередача может осуществляться либо при непосредственном контакте тел, либо через промежуточную среду (и даже через вакуум). Теплопередача называется ещё теплообменом.

9 Процесс в теплоизолированном сосуде называется адиабатным. Мы изучим адиабатный процесс при рассмотрении первого закона термодинамики.

Различают три вида теплопередачи: теплопроводность, конвекция и тепловое излучение. Сейчас мы рассмотрим их более подробно.

8.5 Теплопроводность

Если железный стержень сунуть одним концом в огонь, то, как мы знаем, долго его в руке не продержишь. Попадая в область высокой температуры, атомы железа начинают колебаться интенсивнее (т. е. приобретают добавочную кинетическую энергию) и наносят более сильные удары по своим соседям.

Кинетическая энергия соседних атомов также возрастает, и теперь уже эти атомы сообщают дополнительную кинетическую энергию своим соседям. Так от участка к участку тепло постепенно распространяется по стержню от помещённого в огонь конца до нашей руки. Это и есть теплопроводность (рис. 18 )10 .

Рис. 18. Теплопроводность

Теплопроводность это перенос внутренней энергии от более нагретых участков тела к менее нагретым за счёт теплового движения и взаимодействия частиц тела.

Теплопроводность разных веществ различна. Высокую теплопроводность имеют металлы: лучшими проводниками тепла являются серебро, медь и золото. Теплопроводность жидкостей гораздо меньше. Газы проводят тепло настолько плохо, что относятся уже к теплоизоляторам: молекулы газов из-за больших расстояний между ними слабо взаимодействуют друг с другом. Вот почему, например, в окнах делают двойные рамы: прослойка воздуха препятствует уходу тепла).

Плохими проводниками тепла являются поэтому пористые тела такие, как кирпич, вата или мех. Они содержат в своих порах воздух. Недаром кирпичные дома считаются самыми тёплыми, а в мороз люди надевают меховые шубы и куртки с прослойкой пуха или синтепона.

Но если воздух так плохо проводит тепло, то почему тогда прогревается от батареи комната? Происходит это вследствие другого вида теплопередачи конвекции.

8.6 Конвекция

Конвекция это перенос внутренней энергии в жидкостях или газах в результате циркуляции потоков и перемешивания вещества.

Воздух вблизи батареи нагревается и расширяется. Действующая на этот воздух сила тяжести остаётся прежней, а выталкивающая сила со стороны окружающего воздуха увеличивается, так что нагретый воздух начинает всплывать к потолку. На его место приходит холодный

10 Изображение с сайта educationalelectronicsusa.com.

воздух11 , с которым повторяется то же самое.

В результате устанавливается циркуляция воздуха, которая и служит примером конвекции распространение тепла в комнате осуществляется воздушными потоками.

Совершенно аналогичный процесс можно наблюдать и в жидкости. Когда вы ставите на плиту чайник или кастрюлю с водой, нагревание воды происходит в первую очередь благодаря конвекции (вклад теплопроводности воды тут весьма незначителен).

Конвекционные потоки в воздухе и жидкости показаны12 на рис.19 .

Рис. 19. Конвекция

В твёрдых телах конвекция отсутствует: силы взаимодействия частиц велики, частицы колеблются вблизи фиксированных пространственных точек (узлов кристаллической решётки), и никакие потоки вещества в таких условиях образоваться не могут.

Для циркуляции конвекционных потоков при отоплении комнаты необходимо, чтобы нагретому воздуху было куда всплывать. Если радиатор установить под потолком, то никакая циркуляция не возникнет тёплый воздух так под потолком и останется. Именно поэтому нагревательные приборы помещают внизу комнаты. По той же причине чайник ставят на огонь, в результате чего нагретые слои воды, поднимаясь, уступают место более холодным.

Наоборот, кондиционер нужно располагать как можно выше: тогда охлаждённый воздух начнёт опускаться, и на его место будет приходить более тёплый. Циркуляция пойдёт в обратном направлении по сравнению с движением потоков при обогреве комнаты.

8.7 Тепловое излучение

Каким образом Земля получает энергию от Солнца? Теплопроводность и конвекция исключены: нас разделяет 150 миллионов километров безвоздушного пространства.

Здесь работает третий вид теплопередачи тепловое излучение. Излучение может распространяться как в веществе, так и в вакууме. Как же оно возникает?

Оказывается, электрическое и магнитное поля тесно связаны друг с другом и обладают одним замечательным свойством. Если электрическое поле изменяется со временем, то оно порождает магнитное поле, которое, вообще говоря, также изменяется со временем13 . В свою очередь переменное магнитное поле порождает переменное электрическое поле, которое опять порождает переменное магнитное поле, которое опять порождает переменное электрическое поле. . .

11 Тот же процесс, но в куда более грандиозных масштабах, постоянно происходит в природе: именно так возникает ветер.

12 Изображения с сайтаphysics.arizona.edu.

13 Подробнее об этом будет рассказано в электродинамике, в теме про электромагнитную индукцию.

В результате развития этого процесса в пространстве распространяется электромагнитная волна ¾зацепленные¿ друг за друга электрическое и магнитное поля. Как и звук, электромагнитные волны обладают скоростью распространения и частотой в данном случае это частота, с которой колеблются в волне величины и направления полей. Видимый свет частный случай электромагнитных волн.

Скорость распространения электромагнитных волн в вакууме огромна: 300000 км/с. Так, от Земли до Луны свет идёт чуть больше секунды.

Частотный диапазон электромагнитных волн очень широк. Подробнее о шкале электромагнитных волн мы поговорим в соответствующем листке. Здесь отметим лишь, что видимый свет это крохотный диапазон данной шкалы. Ниже него лежат частоты инфракрасного излучения, выше частоты ультрафиолетового излучения.

Вспомним теперь, что атомы, будучи в целом электрически нейтральными, содержат положительно заряженные протоны и отрицательно заряженные электроны. Эти заряженные частицы, совершая вместе с атомами хаотическое движение, создают переменные электрические поля и тем самым излучают электромагнитные волны. Эти волны и называютя тепловым излучением в напоминание о том, что их источником служит тепловое движение частиц вещества.

Источником теплового излучения является любое тело. При этом излучение уносит часть его внутренней энергии. Встретившись с атомами другого тела, излучение разгоняет их своим колеблющимся электрическим полем, и внутренняя энергия этого тела увеличивается. Именно так мы и греемся в солнечных лучах.

При обычных температурах частоты теплового излучения лежат в инфракрасном диапазоне, так что глаз его не воспринимает (мы не видим, как мы ¾светимся¿). При нагревании тела его атомы начинают излучать волны более высоких частот. Железный гвоздь можно раскалить докрасна довести до такой температуры, что его тепловое излучение выйдет в нижнюю (красную) часть видимого диапазона. А Солнце кажется нам жёлто-белым: температура на поверхности Солнца настолько высока (6000 C), что в спектре его излучения присутствуют все частоты видимого света, да ещё ультрафиолет, благодаря которому мы загораем.

Давайте ещё раз взглянем на три вида теплопередачи (рис. 20 )14 .

Рис. 20. Три вида теплопередачи: теплопроводность, конвекция, излучение

14 Изображения с сайтаbeodom.com.