Первая энергия ионизации. Энергии ионизации

Количественной характеристикой проявления элементом металлических или восстановительных свойств является энергия ионизации.

Энергией ионизации I называется энергия, которую необходимо затратить для отрыва и удаления одного электрона от атома, молекулы или иона. Энергия ионизации выражается в джоулях Дж или электрон-вольтах эВ (1 эВ =1,6 ∙ 10 −19 Дж ; в расчете на 1 моль это соответствует 96,5 кДж/моль ). Чем меньше энергия ионизации, тем выше восстановительная способность атома. Атомы, теряя электроны, превращаются в положительно заряженные ионы. Для данного атома или иона энергия, необходимая для отрыва и удаления первого электрона, называется первой энергией ионизации I 1 , второго – второй энергией ионизации I 2 и т.д. Энергия ионизации увеличивается в следующем порядке: I 1 < I 2 < I 3 < … < I n , т.к. удаление электрона от электронейтрального атома происходит легче, чем от иона.

В пределах одного периода I 1 изменяется не монотонно. Наименьшее ее значение наблюдается у щелочных металлов – это самые активные металлы. У щелочно-земельных металлов (IIA группа) в связи с заполнением s –подуровня энергия ионизации возрастает. У следующих за ними элементов III группы появление первого р –электрона снова снижает энергию ионизации. Резко возрастает она у элементов V группы, что соответствует энергетически выгодному половинному заполнению р –подуровня; у элементов VI группы энергия ионизации чуть уменьшается и затем снова резко возрастает, достигая максимума у элементов VIII группы. Таким образом, в целом, в пределах одного периода с увеличением порядкового номера элемента наблюдается тенденция роста энергии ионизации, а следовательно – ослабление металлических (восстановительных) свойств.

В пределах подгруппы с увеличением порядкового номера элемента валентный электрон оказывается на более удаленном от ядра энергетическом уровне, так как заполняется подуровень с большим значением n . В результате с ростом атомного радиуса и удалением электрона от ядра сила притяжения его ядром ослабевает, что облегчает отрыв электрона от атома. Поэтому в подгруппе с ростом порядкового номера элемента энергия ионизации уменьшается, а металлические (восстановительные) свойства элементов увеличиваются. Таким образом, самым активным металлом из всех известных сейчас является франций.

Так как металлы образуют гидроксиды, проявляющие основные свойства, то чем активнее металл, тем более сильным основанием является соответствующий ему гидроксид. Так, металлам IA группы соответствуют самые сильные основания – щелочи, но в ряду NaOH KOH – CsOH самым сильным основанием будет CsOH .

Химическая природа элемента обусловливается способностью его атома терять (отдавать) или приобретать электроны. Эта способность может быть количественно оценена энергией ионизации атома и его сродством к электрону.

Энергией ионизацииI называется количество энергии, необходимое для отрыва электрона от невозбужденного атома :

Э 0 + I ® Э + + е – или Э 0 ® Э + + е –

Энергию ионизации можно выражать в любых единицах, имеющих размерность энергии (например, в ккал/моль, в кДж/моль или эВ/атом). Чаще всего ее измеряют в электрон-вольтах. Значения энергии ионизации в эВ/атом численно равны потенциалам ионизации в В. Величина энергии ионизации восстановительной способности элемента .

Для всех периодов характерна закономерность: с увеличением заряда ядра возрастает энергия ионизации атомов (I), достигая максимума у инертного элемента. Например, для элементов 2-го периода энергия ионизации имеет следующие значения:

Э Li Be B C N O F Ne
I, эВ 5,392 9,323 8,298 11,260 14,534 13,618 17,423 21,565

Нетрудно видеть, что в периодах с ростом заряда ядра атома восстановительная способность элемента уменьшается; в периоде у каждого атома последующего элемента оторвать электрон с внешнего энергетического уровня труднее, чем у предыдущего, и наиболее трудно – у инертных газов.

Для много электронных атомов энергии ионизации I 1 , I 2 , I 3 … соответствует отрыву первого, второго, третьего и т.д. электронов. При этом всегда I 1 < I 2 < I 3 , т.к. увеличение числа оторванных электронов приводит к возрастанию положительного заряда образующегося иона. Например, для атома лития (Li)

I 1 < I 2 < I 3

На величину энергии ионизации существенное влияние оказывают два противоположных эффекта: эффект экранирования и эффект проникновения электронов к ядру.

Эффект экранирования заряда ядра обусловлен наличием в атоме между внешним электроном и ядром других электронов, которые экранируют, ослабляют воздействие на этот электрон положительного заряда ядра и тем самым ослабляют его связь с ядром. Понятно, что эффект экранирования возрастает с увеличением числа внутренних электронных слоев. Наиболее четко этот эффект проявляется в группах и подгруппах (с увеличением главного квантового числа).

Эффект проникновения электронов к ядру обусловлен тем обстоятельством, что согласно законам квантовой механики все электро-ны и даже внешние валентные определенное время могут находиться в области, близкой к ядру. Можно сказать поэтому, что внешние электро-ны проникают к ядру через слои внутренних электронов. При этом установлено, что концентрация электронной плотности у ядра (степень проникновения электронов) при одном и том же значении главного квантового числа наибольшая для s-электронов, меньше – для p-электронов, еще меньше – для d-электронов и т.д. Например, при n = 3 степень проникновения убывает в последовательности 3s > 3p > 3d.

Понятно, что эффект проникновения увеличивает прочность связи внешних электронов с ядром. Этим, в частности, определяется порядок заполнения в многоатомных атомах s-, p-, d-, f- … орбиталей при данном n.

Таким образом, вследствие более глубокого проникновения s-элек-троны в большей степени экранируют ядро, чем р-электроны, а последние сильнее, чем d-электроны и т.д.

Важным свойством элементов, которое сильно зависит от их орби-тальной конфигурации, является сродство к электрону e , представляющее собой изменение энергии, которым сопровождается присоединение электрона к нейтральному атому (к изолированному атому) с образованием отрицательного иона

Э 0 + е – ® Э – ± e.

Если присоединение к атому электрона с образованием отрицательного иона сопровождается выделением энергии, e имеет положительное значение. Если этот процесс требует затраты энергии, e – отрицательно.

Сродство к электрону выражается в тех же единицах, что и энергия ионизации, т.е. в эВ.

Наибольшим сродством к электрону обладают р-элементы VII группы. Наименьшее и даже отрицательное сродство к электрону имеют атомы с конфигурацией ns 2 (Be, Mg, Zn) и ns 2 np 6 (Ne, Ar, Kr) или с наполовину заполненным р-подслоем (N, P, As). Это служит дополнительным доказательством повышенной устойчивости указанных электронных конфигураций.

Сродство к электрону является мерой количественной оценки окислительной способности элемента .

Для всех периодов характерна закономерность: с увеличением заряда ядра возрастает сродство атомов к электрону. Видно, что в периодах с увеличением заряда ядра окислительная способность элементов увеличи-вается. Наибольшей окислительной способностью в периодической системе обладают элементы VII группы. В периоде атом каждого последующего элемента легче присоединяет электрон, чем предыдущий.

При оценке химических свойств элемента необходимо учитывать как энергию ионизации, так и сродство атома к электрону. Для сравнительной оценки восстановительных и окислительных свойств элемента введена особая характеристика, названная электроотрицательностью (ЭО).

Электроотрицательность

Электроотрицательность c это способность атома данного элемента к оттягиванию на себя электронной плотности по химическим связям по сравнению с другими элементами в соединении . Очевидно, что эта способность зависит от энергии ионизации атома и его сродства к электрону. В 1934 г. Р. Малликен показал, что электроотрицательность можно связать с величиной, являющейся средней между сродством к электрону и энергией ионизации атома, т.е. электроотрицательность c может быть выражена как полусумма его энергии ионизации и сродства к электрону:

c = 1/2(I + e) или ЭО = 1/2(I + e)

Например,

ЭО Li =1/2(5,392 + 0,59) = 2,991 эВ

ЭО F = 1/2(17,423 + 3,45) = 10,4365 эВ

В настоящее время имеется около 20 шкал электроотрицательности, в основу расчета которых положены разные свойства элементов и образуемых ими веществ. В связи с этим и в целях удобства вместо абсолютных значений электроотрицательности элементов используют значения относительной электроотрицательности (ЭОЭ). При этом электроотрицательность лития принимается за единицу, и по отношению к ней вычисляется ОЭО всех элементов. Например, элементы 2-го периода имеют следующие значения ОЭО:

Li Be B C N O F
1,0 1,5 2,0 2,5 3,0 3,5 4,0

Приведенные значения ОЭО элементов полезно запомнить, и сделать это нетрудно – у каждого последующего элемента 2-го периода значение ОЭО возрастает на 0,5.

Для всех периодов характерна закономерность: с увеличением заряда ядра атома электроотрицательность элементов возрастает, достигает максимума у галогенов .

Выводы по закономерностям в периодах.

На основании рассмотренных свойств элементов в периодах наблюдается следующие общие закономерности:

1. Уменьшаются атомные объемы (т.к. уменьшаются орбитальные радиусы).

2. Увеличиваются значения энергии ионизации, сродства к электрону и ОЭО.

3. Изменение свойств элементов происходит от ярко выраженных восстановителей (ns 1-2 – элементы) к ярко выраженным окислителям (np 5-4 – эле-менты).

4. В малых периодах (1, 2, 3) наблюдаются более резкое различие свойств элементов, чем в больших. Так, в I периоде изменение свойств от ярко выраженных восстановительных свойств к ярко выраженным окислитель-ным свойствам осуществляется в одном элементе – водороде, проявляю-щем как восстановительные, так и окислительные свойства:

Н 0 – ® Н + восстановительные свойства;

Н 0 + ® Н – окислительные свойства.

У элементов 2 периода переход восстановительных свойств к окислительным наблюдается уже на семи элементах.

В больших периодах изменение химических свойств элементов происходит более плавно. Это объясняется тем, что в больших периодах (4, 5, 6, 7) происходит заполнение внутренних энергетических уровней (d- и f- подуровней), а на внешнем энергетическом уровне у них остается один или два электрона.

Периодическая система элементов Д.И. Менделеева подразделяется на 8 групп.

Группа это вертикальный ряд элементов с одинаковым числом валентных электронов, но с различным числом энергетических уровней в атомах .

Энергия ионизации - основная характеристика атома. Именно она определяет природу и прочность которые способен образовывать атом. Восстановительные свойства вещества (простого) также зависят от этой характеристики.

Понятие «энергия ионизации» иногда заменяют понятием «первый ионизационный потенциал» (I1), подразумевая под этим самую маленькую энергию, которая нужна для того, чтобы электрон удалился от свободного атома, когда тот находится в таком состоянии энергии, которое называется низшим.

В частности, для атома водорода так называют энергию, которая требуется для отрыва электрона от протона. Для атомов с несколькими электронами существует понятие второго, третьего и т.д. ионизационных потенциалов.

Энергия ионизации - это сумма, одним слагаемым которой является энергия электрона, а другим - системы.

В химии энергия атома водорода обозначается символом «Ea», а сумму потенциальной энергии системы и энергии электрона можно выразить формулой: Ea= E+T= -Z.e/2.R.

Из этого выражения видно, что стабильность системы напрямую связана с зарядом ядра и расстояния между ним и электроном. Чем меньше это расстояние, чем сильнее заряд ядра, тем сильнее они притягиваются, тем стабильнее и устойчивее система, тем большее количество энергии необходимо потратить на разрыв этой связи.

Очевидно, что по уровню потраченной для разрушения связи энергии можно сравнивать стабильность систем: чем больше энергия, тем стабильнее система.

Энергия ионизации атома - (сила, которая необходима для разрушения связей в атоме водорода) была рассчитана экспериментальным путем. Сегодня ее значение известно точно: 13,6 эВ (электронвольт). Позже ученые, также при помощи целой серии экспериментов, сумели рассчитать энергию, требующуюся для разрушения связи атом - электрон в системах, состоящих из единственного электрона и ядра с зарядом, в два раза превышающим заряд атома водорода. Экпериментальным путем установлено, что в таком случае требуется 54,4 электронвольт.

Известные законы электростатики гласят, что энергия ионизации, необходимой для того, чтобы разорвать связь между противоположенными зарядами (Z и е), при условии, что они расположены на расстоянии R, фиксируется (определяется) таким уравнением: T=Z.e/R.

Такая энергия пропорциональна величине зарядов и, соответственно, находится в обратной зависимости к расстоянию. Это вполне естественно: чем сильнее заряды, тем сильнее силы соединяющие их, тем мощнее усилие требуется приложить, чтобы разрушить связь между ними. Это же касается и расстояния: чем оно меньше, тем сильнее энергия ионизации, тем больше вил придется приложить для разрушения связи.

Это рассуждение объясняет, почему система атомов с сильным зарядом ядра стабильнее и нуждается в большей энергии для отрыва электрона.

Сразу возникает вопрос: "Если только вдвое сильнее, почему энергия ионизации, необходимая для отрыва электрона, увеличивается не в два, а в четыре раза? Почему она равняется удвоенному заряду, взятому в квадрат(54,4/13,6=4)?".

Это противоречие объясняется довольно просто. Если заряды Z и е в системе находятся относительно во взаимном состоянии неподвижности, то энергия (Т) пропорциональна заряду Z, а увеличиваются они пропорционально.

Но в системе, где электрон с зарядом е делает обороты ядра с зарядом Z, а Z усиливается, пропорционально уменьшается радиус вращения R: электрон с большей силой притягивается к ядру.

Вывод очевиден. На энергию ионизации действует заряд ядра, расстояние (по радиусу) от ядра до высшей точки зарядовой плотности внешнего электрона; сила отталкивания между наружными электронами и мера проникающей способности электрона.

Поскольку электрон притягивается ядром, то для его отрыва нужно сообщить атому энергию, превышающую энергию этого взаимодействия. Количество энергии, затрачиваемое для превращения нейтрального атома в положительно заряженный ион, называется энергией ионизации, или ионизационным потенциалом. Для химических исследований наибольшее значение имеют первые потенциалы; первым потенциалом ионизации называется энергия, затрачиваемая на полное удаление наиболее слабо связанного электрона от атома в невозбужденном состоянии. Ионизируемым является тот электрон, для которого энергия минимальна.

Внутри каждого периода слева направо наблюдается повышение ионизационных потенциалов (рис. 3.9). В некоторых случаях это происходит не всегда равномерно и иногда потенциал ионизации элемента оказывается меньше, чем у предыдущего элемента того же периода.

Примером могут служить бор (Z = 5) и бериллий (Z = 4). У бора потенциал ионизации меньше, чем у бериллия. Это объясняется большим про-

Рис. 3.9.

никновением s-электронов к ядру по сравнению с р-электронами того же энергетического уровня. Ионизация бериллия сопровождается отрывом от атома s-электрона второго уровня, а ионизация бора - отрывом р-электро- на того же уровня. Проникающий эффект электронов зависит от их природы: наибольшим эффектом обладают s-электроны, меньшим - р-электроны и еще меньшим d- и/-электроны. Эффект проникновения более характерен для тяжелых атомов с большим числом электронов во внутренних слоях. Проникающий эффект внешних электронов наиболее сильно выражен у ^-элементов.

Атомы (и молекулы простых веществ) могут не только отщеплять электрон, но и присоединять. Тепловой эффект, отнесенный к 1 молю нейтрального атома элемента при присоединении им электрона, называется энергией сродства к электрону.

Сродство к электрону возрастает с уменьшением радиуса. Следовательно, в пределах периода с увеличением заряда ядра от щелочного металла к галогену наблюдается увеличение сродства к электрону. В пределах групп сверху вниз наблюдается обратная зависимость, т.е. с увеличением заряда ядра сродство к электрону уменьшается.

Потенциал ионизации и сродство к электрону - важные характеристики реакционной способности атомов элемента. Если атомы двух элементов сильно отличаются между собой значениями потенциалов ионизации, то у одного из них будет низкий потенциал ионизации, а у другого - высокое сродство к электрону. Такие атомы будут легко реагировать друг с другом с образованием прочной связи. Практическое использование этих характеристик ограничено тем, что они относятся к изолированным атомам, т.е. к газообразным состояниям. Если же атомы находятся не в изолированном состоянии, то в этом случае принято пользоваться эмпирической величиной, называемой электроотрицательностью.

Под электроотрицателыюстыо элемента (ЭО) подразумевают относительную способность его атомов притягивать электроны. Атомы элементов обладают различной электроотрицательностью: одни легче отдают электроны, другие легче их присоединяют. При образовании химической связи между двумя атомами связующие электроны обычно больше притягиваются тем атомом, у которого электроотрицательность больше. Следовательно, зная значения электроотрицательностей взаимодействующих атомов, можно предсказать тип формирующейся связи между ними. Так, молекулы, образованные атомами, сильно отличающимися по электроотрицательности, должны быть более ионными, а если у взаимодействующих атомов близкие значения электроотрицательностей, то между ними образуется менее полярная связь.

Внутри периода слева направо электроотрицательность увеличивается. Для переходных элементов электроотрицательность несколько уменьшается в пределах периода. Внутри групп электроотрицательность преимущественно уменьшается сверху вниз (рис. 3.10).

Рис. 3.10. Значение относительной электроотрицательности некоторых «V- и /7-элементов по Полингу 2

Степень окисления. Смещение связующих электронов в сторону более электроотрицательного атома создает у него избыток отрицательного заряда, а у менее электроотрицательного - дефицит электронов. В соединениях с ионной связью атом, отдавший электрон, превращается в катион, а принявший электрон - в анион. Для характеристики атомов в молекуле введено понятие степени окисления, или окислительного числа атомов. Степень окисления - численное значение электрического заряда атома при допущении, что молекула построена по ионному типу. Эта величина указывает на состояние окисления атома и представляет собой лишь удобный метод учета переноса электронов: она не является истинным зарядом атома в молекуле. Более подробно см. параграф 9.1.

Энергия ионизации — это количество энергии, которое изолированный атом в основном электронном состоянии должен поглотить для освобождения электрона, в результате чего образуется ион.

Эта величина обычно выражается в кДж/моль или количество, необходимое для того, чтобы потерять один электрон.

Образование ионов

Ионы — это атомы, которые получили или потеряли электроны. Образуется ионизирующее излучение со своими положительными и отрицательными особенностями для человека. При рассмотрении первоначально нейтрального атома, вытеснение первого электрона потребует меньше работы, чем вытеснение второго, второй потребует меньше, чем третьего и так далее. Для вытеснение каждого последующего электрона требуется больше работы. Это происходит потому, что после потери первой отрицательно заряженной элементарной частицы общий заряд атома становится положительным, а отрицательные силы будут притягиваться к положительному заряду новообразованного иона.

Чем больше отрицательно заряженных элементарных частиц потеряно, тем более положительным будет этот ион, тем труднее отделить другие электроны от этого атома.

В общем, чем дальше электрон от ядра, тем легче его изгнать. Другими словами, энергия ионизации является функцией атомного радиуса: чем больше радиус, тем меньше количество работы, необходимой для удаления электрона с внешней орбитали. Например, было бы гораздо легче забрать электроны от более крупного элемента Ca (кальция), чем от того, где они крепче удерживаются к ядру как Cl (хлор).

В химической реакции, понимание энергии ионизации важно для того, чтобы понять поведение различных атомов при связях друг с другом .

Например, энергия ионизации натрия (щелочного металла) составляет 496 кДж/моль, тогда как хлора — 1251,1 кДж/моль.

Элементы, находящиеся близко друг к другу в периодической таблице, или элементы, не имеющие большой разницы в энергии ионизации, образуют полярные ковалентные или ковалентные связи. Например, углерод и кислород делают СО 2 (углекислый газ) находящиеся близко один к другому на периодической таблице. Они поэтому формируют ковалентное скрепление. Углерод и хлор образуют CCl 4 (четыреххлористый углерод) другой молекулой, которая ковалентно связана.

Периодическая таблица и тренд ионизации

Энергия ионизации зависит от атомного радиуса. Так как идя справа налево по периодической таблице, атомный радиус увеличивается, а энергия ионизации уменьшается слева направо в периодах и вниз по группам.

Объяснение шаблона в первых нескольких элементах

Водород имеет электронную структуру 1s1. Это очень маленький атом, и электрон приближается к ядру и, следовательно, притягивает. Нет электронов, экранирующих его от ядра, поэтому энергия ионизации высока 1310 кДж моль -1 .

Гелий имеет структуру 1s2. Электрон удаляется с той же орбиты, что и в случае с водородом он близок к ядру. Значение 2370 кДж моль -1 намного выше, чем у водорода, потому что ядро теперь имеет 2 протона, притягивающие их вместо 1.

Литий — 1s22s1. Свой внешний электрон находится на втором энергетическом уровне, гораздо более удаленнее от ядра. Можно утверждать, что это было бы компенсировано дополнительным протоном в ядре, но электрон не чувствует полной тяги ядра — он экранируется.

Если сравнить литий с водородом (а не с гелием), электрон водорода также чувствует тягу 1+ от ядра, но расстояние намного больше с литием. Первая энергия ионизации лития падает до 519 кДж моль -1 , тогда как водород составляет 1310 кДж моль -1 .

Исключения из этой тенденции наблюдаются для щелочноземельных металлов (группа 2: бериллий (Be), магний (Mg), кальций (Ca), стронций (Sr), барий (Ba), радий (Ra), унбинилий (Ubn) и элементов группы азота (группа 5: азот (N); фосфор (P); мышьяк (As); сурьма (Sb); висмут (Bi)). Группы 2 и 5 имеют полностью и наполовину заполненную электронную конфигурацию соответственно, поэтому для удаления отрицательно заряженных элементарных частиц из полностью заполненных орбиталей требуется больше работы, чем из неполнозаполненных.

Щелочные металлы (группа I) обладают малой энергией ионизации, особенно по сравнению с галогенами или группой VII.

В дополнение к радиусу (расстоянию между ядром и электронами на самой внешней орбите), количество электронов между ядром, в самой внешней оболочке, также влияет на энергию ионизации.

Этот эффект, при котором полный положительный заряд ядра не ощущается внешними электронами из-за отрицательных зарядов внутренних, частично отменяющих положительный заряд, называется экранированием.

Чем больше электронов защищает внешнюю электронную оболочку от ядра, тем меньше работы требуется для вытеснения отрицательно заряженной элементарной частицы из указанного атома.

Чем выше эффект экранирования требуется меньше приложить работы. Из-за экранирующего эффекта энергия ионизации уменьшается сверху вниз в группе. Из таблицы Менделеева видно что Цезий имеет низкую, а фтор самую высокую энергию ионизации (за исключением гелия и неона).

Для чего необходимо знать про эту величину

Падение энергии ионизации при движении вниз таблицы приводит к снижению энергии активации и, следовательно, к более быстрым реакциям.

Энергия ионизации являются одним из наиболее важных факторов, которые необходимо учитывать при оценке прочности химических связей и прогнозировании того, как химические вещества будут связываться друг с другом. Но это не .